98%
921
2 minutes
20
Pyroelectric effect which refers to electrical responses induced by time temperature-dependent fluctuations has received extensive attention, showing promising application prospects for infrared (IR) technology. Although enhanced pyroelectric performances are obtained in potassium sodium niobate-based ceramics at room temperature via multi-symmetries coexistence design, the poor pyroelectric temperature stability is still an urging desire that needs to be resolved. Herin, by constructing multilayer composite ceramics and adjusting the proportion of stacked layers, improved pyroelectric coefficient, and figures of merit (FOMs), as well as enhanced temperature stabilities can be achieved. With a remained high pyroelectric coefficient of 5.45 × 10 C m°C at room temperature, the pyroelectric parameters almost keep unchanged in the temperature range of 30-100 °C, showing great properties advantages compared with previous reports. The excellent properties can be attributed to the graded polarization rotation states among each lamination induced by successive phase transitions. The novel strategy for achieving stable pyroelectric sensing can further promote the application in the IR sensors field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202403346 | DOI Listing |
J Sep Sci
September 2025
Programa De Pós-Graduação em Química, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil.
Secondary metabolites are important bioactive compounds for diet and medicine. This study optimizes the extraction of hydroethanolic herbal extracts using an EDGE (Energized Dispersive Guided Extraction) system, evaluates their antioxidant capacity, and analyzes correlations among antioxidant activity, total phenolic content, and individual compounds. A Doehlert matrix design was used to optimize extraction, having temperature and time as independent variables, and total phenolic content (mg GAE/g) as the response, quantified via the Folin-Ciocalteu method.
View Article and Find Full Text PDFNat Commun
September 2025
State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
How terrestrial mean annual temperature (MAT) evolved throughout the past 2 million years (Myr) remains elusive, limiting our understanding of the patterns, mechanisms, and impacts of past temperature changes. Here we report a ~2-Myr terrestrial MAT record based on fossil microbial lipids preserved in the Heqing paleolake, East Asia. The increased amplitude and periodicity shift of glacial-interglacial changes in our record align with those in sea surface temperature (SST) records.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, China.
Photon upconversion through high harmonic generation, multiphoton absorption, Auger recombination and phonon scattering performs a vital role in energy conversion and renormalization. Considering the reduced dielectric screening and enhanced Coulomb interactions, semiconductor monolayers provide a promising platform to explore photon upconversion at room temperature. Additionally, two-photon upconversion was recently demonstrated as an emerging technique to probe the excitonic dark states due to the extraordinary selection rule compared with conventional excitation.
View Article and Find Full Text PDFACS Nano
September 2025
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
Polymorphic two-dimensional (2D) transition metal dichalcogenides (TMDCs) exhibit diverse properties for optoelectronic applications. Here, utilizing phase-engineered MoTe as a prototypical platform, we comprehensively explored its ultrafast and nonlinear optical properties to complete the fundamental framework of phase-dependent optical phenomena in 2D TMDCs. Starting with the phase-selective synthesis of 2H- and 1T'-MoTe with tailored thicknesses, we revealed their distinct photocarrier relaxation mechanisms using intensive power-/temperature-/thickness-dependent transient absorption spectra (TAS).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
Developing scalable and robust deicing coatings is essential for real-world applications, yet current coatings either suffer from intrinsic fragility or low thermal conductivity, limiting sustainability and deicing effectiveness. Here, we report a scalable and durable photothermal superhydrophobic coating coupling with enhanced thermal conductivity, engineered by embedding carbon nanotubes within a perfluoroalkoxy polymer matrix. Our design achieved 97.
View Article and Find Full Text PDF