Synergistic Active Heterostructure Design for Enhanced Two Electron Oxygen Reduction via Chemical and Electrochemical Reconstruction of Heterosulfides.

Angew Chem Int Ed Engl

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transition metal sulfides, particularly heterostructures, represent a promising class of electrocatalysts for two electron oxygen reduction (2e ORR), however, understanding the dynamic structural evolution of these catalysts during alkaline ORR remains relatively unexplored. Herein, NiS/InS heterostructure was synthesized as a precatalyst and through a series of comprehensive ex situ and in situ characterizations, including X-ray absorption spectroscopy, Raman spectroscopy, transient photo-induced voltage measurements, electron energy loss spectroscopy, and spherical aberration-corrected electron microscopy, it was revealed that nickel/indium (oxy)hydroxides (NiOOH/In(OH)) could be evolved from the initial NiS/InS via both electrochemical and chemical-driven methods. The electrochemical-driven phase featured abundant bridging oxygen-deficient [NiO]-[InO] units at the interfaces of NiOOH/In(OH), facilitating a synergistic effect between active Ni and In sites, thus enabling an enhanced alkaline 2e ORR capability than that of chemical-driven process. Remarkably, electrochemically induced NiOOH/In(OH) exhibited exceptional performance, achieving HO selectivity of >90 % across the wide potential window (up to 0.4 V) with a peak selectivity of >99 %. Notably, within the three-electrode flow cell, a current density of 200 mA cm was sustained over 20 h, together with an impressive Faradaic efficiency of ~90 % during the whole cycle process.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202408508DOI Listing

Publication Analysis

Top Keywords

synergistic active
8
electron oxygen
8
oxygen reduction
8
alkaline orr
8
active heterostructure
4
heterostructure design
4
design enhanced
4
electron
4
enhanced electron
4
reduction chemical
4

Similar Publications

Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.

View Article and Find Full Text PDF

IL12-based phototherapeutic nanoparticles through remodeling tumor-associated macrophages combined with immunogenic tumor cell death for synergistic cancer immunotherapy.

Biomater Sci

September 2025

Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.

Various cancer therapeutic strategies have been designed for targeting tumor-associated macrophages (TAMs), but TAM reprogramming-based monotherapy is often clinically hindered, likely due to the lack of a coordinated platform to initiate T cell-mediated immunity. Herein, we fabricated reactive oxygen species (ROS)-responsive human serum albumin (HSA)-based nanoparticles (PEG/IL12-IA NPs) consisting of indocyanine green (ICG), arginine (Arg), and interleukin 12 (IL12). Upon laser irradiation, the nanoparticles were found to be able to dissociate, thus facilitating the release of IL12.

View Article and Find Full Text PDF

Indocyanine green (ICG) is a well-established near-infrared dye which has been used clinically for several decades. Recently, it has been utilised for fluorescence-guided surgery in a range of solid cancer types, including sarcoma, with the aim of reducing the positive margin rate. The increased uptake and retention of ICG within tumours, compared with normal tissue, gives surgeons a visual reference to aid resection when viewed through a near-infrared camera.

View Article and Find Full Text PDF

Injectable Plant Phosphate Coordination Compound-Based Adhesive Hydrogel Accelerates Osteoporotic Fracture Healing by Restoring Osteoclast/Osteoblast Imbalance.

ACS Nano

September 2025

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical Univer

Osteoporotic fractures are notoriously difficult to heal due to an imbalance between osteoblasts and osteoclasts. Current treatments often have limited efficacy or adverse side effects, necessitating safer and more effective solutions. Here, we developed an injectable plant-derived phosphate coordination compound-based adhesive hydrogel (MgPA-Gel) to restore bone homeostasis by integrating magnesium ions (Mg)-phytic acid (PA) nanoparticles with aminated gelatin (Gel-NH) and aldehydated starch (AS).

View Article and Find Full Text PDF

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF