98%
921
2 minutes
20
Black carbon (BC) is emitted into the atmosphere during combustion processes, often in conjunction with emissions such as nitrogen oxides (NO) and ozone (O), which are also by-products of combustion. In highly polluted regions, combustion processes are one of the main sources of aerosols and particulate matter (PM) concentrations, which affect the radiative budget. Despite the high relevance of this air pollution metric, BC monitoring is quite expensive in terms of instrumentation and of maintenance and servicing. With the aim to provide tools to estimate BC while minimising instrumentation costs, we use machine learning approaches to estimate BC from air pollution and meteorological parameters (NO, O, PM, relative humidity (RH), and solar radiation (SR)) from currently available networks. We assess the effectiveness of various machine learning models, such as random forest (RF), support vector regression (SVR), and multilayer perceptron (MLP) artificial neural network, for predicting black carbon (BC) mass concentrations in areas with high BC levels such as Northern Indian cities (Delhi and Agra), across different seasons. The results demonstrate comparable effectiveness among the models, with the multilayer perceptron (MLP) showing the most promising results. In addition, the comparability between estimated and monitored BC concentrations was high. In Delhi, the MLP shows high correlations between measured and modelled concentrations during winter (R: 0.85) and post-monsoon (R: 0.83) seasons, and notable metrics in the pre-monsoon (R: 0.72). The results from Agra are consistent with those from Delhi, highlighting the consistency of the neural network's performance. These results highlight the usefulness of machine learning, particularly MLP, as a valuable tool for predicting BC concentrations. This approach provides critical new opportunities for urban air quality management and mitigation strategies and may be especially valuable for megacities in medium- and low-income regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174804 | DOI Listing |
Stroke
September 2025
Department of Neurology, Yale School of Medicine, New Haven, CT (L.H.S.).
Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.
View Article and Find Full Text PDFF1000Res
September 2025
Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK.
Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.
View Article and Find Full Text PDFAnal Methods
September 2025
College of Science, Kunming University of Science and Technology, Kunming, 650500, China.
To address the technical challenges associated with determining the chronological order of overlapping stamps and textual content in forensic document examination, this study proposes a novel non-destructive method that integrates hyperspectral imaging (HSI) with convolutional neural networks (CNNs). A multi-type cross-sequence dataset was constructed, comprising 60 samples of handwriting-stamp sequences and 20 samples of printed text-stamp sequences, all subjected to six months of natural aging. Spectral responses were collected across the 400-1000 nm range in the overlapping regions.
View Article and Find Full Text PDFPeriodontol 2000
September 2025
Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Oral cancer is a major global health burden, ranking sixth in prevalence, with oral squamous cell carcinoma (OSCC) being the most common type. Importantly, OSCC is often diagnosed at late stages, underscoring the need for innovative methods for early detection. The oral microbiome, an active microbial community within the oral cavity, holds promise as a biomarker for the prediction and progression of cancer.
View Article and Find Full Text PDFHum Brain Mapp
September 2025
Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).
View Article and Find Full Text PDF