98%
921
2 minutes
20
This study explores the use of neural networks (NNs) as surrogate models for Monte-Carlo (MC) simulations in predicting the dose-averaged linear energy transfer (LET) of protons in proton-beam therapy based on the planned dose distribution and patient anatomy in the form of computed tomography (CT) images. As LETis associated with variability in the relative biological effectiveness (RBE) of protons, we also evaluate the implications of using NN predictions for normal tissue complication probability (NTCP) models within a variable-RBE context.The predictive performance of three-dimensional NN architectures was evaluated using five-fold cross-validation on a cohort of brain tumor patients (= 151). The best-performing model was identified and externally validated on patients from a different center (= 107). LETpredictions were compared to MC-simulated results in clinically relevant regions of interest. We assessed the impact on NTCP models by leveraging LETpredictions to derive RBE-weighted doses, using the Wedenberg RBE model.We found NNs based solely on the planned dose distribution, i.e. without additional usage of CT images, can approximate MC-based LETdistributions. Root mean squared errors (RMSE) for the median LETwithin the brain, brainstem, CTV, chiasm, lacrimal glands (ipsilateral/contralateral) and optic nerves (ipsilateral/contralateral) were 0.36, 0.87, 0.31, 0.73, 0.68, 1.04, 0.69 and 1.24 keV m, respectively. Although model predictions showed statistically significant differences from MC outputs, these did not result in substantial changes in NTCP predictions, with RMSEs of at most 3.2 percentage points.The ability of NNs to predict LETbased solely on planned dose distributions suggests a viable alternative to compute-intensive MC simulations in a variable-RBE setting. This is particularly useful in scenarios where MC simulation data are unavailable, facilitating resource-constrained proton therapy treatment planning, retrospective patient data analysis and further investigations on the variability of proton RBE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ad64b7 | DOI Listing |
J Appl Clin Med Phys
September 2025
Department of Radiation Oncology, University of Utah, Salt Lake City, Utah, USA.
Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.
View Article and Find Full Text PDFDiabet Med
September 2025
Endocrinology Department, East Surrey Hospital, Surrey and Sussex Healthcare NHS Trust, Redhill, UK.
Aim: To explore the experiences of patients, families and clinicians managing steroid-induced hyperglycaemia (SIH) out of the hospital and identify areas for improved care.
Methods: We searched hospital records to identify patients requiring input from the diabetes inpatient team between February 2022 and March 2023 due to steroid usage. Clinicians, patients and their family members were interviewed remotely about their experiences of care and views on how to improve it.
Radiother Oncol
September 2025
Dept of Radiation Oncology, Centre Léon Bérard, Lyon, France. Electronic address:
Background And Purpose: To date, no consensus guidelines have been published that systematically guide delineation of primary and nodal Clinical Target Volumes (CTVs) in patients who require post-operative radiotherapy (PORT) for mucosal Head and Neck squamous cell carcinoma (HNSCC). As a result, significant individual, institutional and national variation exists in the way that CTVs are delineated in the post-operative setting, leading to considerable heterogeneity in radiotherapy treatment.
Methods: A multi-disciplinary group of experts convened by the European Society for Radiotherapy and Oncology (ESTRO) set-out principles for the multi-disciplinary management of oral cavity squamous cell carcinoma (OCSCC).
PLoS One
September 2025
Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Korea.
Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA.
Purpose: Cranial irradiation is associated with health-related quality of life (HRQoL) deficits in childhood cancer survivors. We investigated the relationship between radiation dose to brain substructures and HRQoL in children with brain tumors treated with proton beam therapy (PBT).
Methods: Data were obtained from children in the Pediatric Proton/Photon Consortium Registry who received PBT for primary brain tumors between 2015 and 2021.