The Role of PGPB-Microalgae interaction in Alleviating Salt Stress in Plants.

Curr Microbiol

Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant development and yield are severely hampered by climate change. Plants are very prone to a variety of abiotic stressors during growth, making them susceptible to destruction which can reduce the productivity by 20-60%. These stresses generate reactive oxygen species (ROS), which damage lipids, proteins, and nucleic acids. Microalgae and plant growth-promoting bacteria (PGPB) are remarkably effective at reducing the effects of salt stress and promoting plant growth, thereby increasing agricultural yield, and helping ensure global food security. Through a variety of mechanisms, including the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophores, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, and modulation of antioxidants defense machinery under abiotic stresses promote plant growth after inoculation of PGPB and microalgae. These microorganisms also maintain ion homeostasis, offer osmotic balance, stimulate genes that respond to salt and drought, rewire the metabolism, modify the transcription of ion transporter genes, and more. To counteract the negative consequences of salinity stress, this study summarizes the effects of PGPB- microalgae along with a tentative protective mechanism during salinity stress for sustainable agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-024-03805-7DOI Listing

Publication Analysis

Top Keywords

salt stress
8
plant growth
8
salinity stress
8
role pgpb-microalgae
4
pgpb-microalgae interaction
4
interaction alleviating
4
alleviating salt
4
stress
4
stress plants
4
plant
4

Similar Publications

We report the complete genome sequence of strain MNA2.1, isolated from coastal sediments of the Berre lagoon, France. The genome consists of a 3,866,286 bp circular chromosome and a megaplasmid of 715,144 bp.

View Article and Find Full Text PDF

Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.

View Article and Find Full Text PDF

Global salinization increasingly threatens ecosystem integrity and the regulation of biogeochemical cycles. Our study reveals novel insights into the microbial contributions to the organohalide decomposition in saline environments, demonstrating the unprecedented ability of organohalide-respiring bacteria and to completely dechlorinate trichloroethene to non-toxic ethene under hypersaline conditions (up to 31.3 g/L) in long-term operations.

View Article and Find Full Text PDF

The associated factors for exertional heat stroke among amateur golfers remain poorly understood. We conducted a case-control study to examine exertional heat exhaustion (EHE) - related symptoms among amateur golfers in Japan using a self-administered questionnaire. Retrospective case-control study design.

View Article and Find Full Text PDF

In-situ extrusion 3D printing with tea polyphenol crosslinking for Hyaluronic acid sodium salt -based composite hydrogel scaffolds.

Colloids Surf B Biointerfaces

September 2025

School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China; Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, PR China.

High-performance hydrogel biomaterials hold considerable promise for advanced wound care. However, the suboptimal mechanical properties of conventional hydrogel materials limit their practical application. In this study, Hyaluronic acid sodium salt (HA), xanthan gum (XG), and N-acryloyl-glycinamide (NAGA) hydrogels with porous structures were successfully fabricated using in-situ extrusion 3D printing technology, and a functionalization strategy involving tea polyphenol (TP) immersion was proposed to enhance material properties through additional hydrogen bonding.

View Article and Find Full Text PDF