98%
921
2 minutes
20
Exposure to toxic substances, introduced into our daily lives during industrialization and modernization, can disrupt the epithelial barriers in the skin, respiratory, and gastrointestinal systems, leading to microbial dysbiosis and inflammation. Athletes and physically active individuals are at increased risk of exposure to agents that damage the epithelial barriers and microbiome, and their extreme physical exercise exerts stress on many organs, resulting in tissue damage and inflammation. Epithelial barrier-damaging substances include surfactants and enzymes in cleaning products, laundry and dishwasher detergents, chlorine in swimming pools, microplastics, air pollutants such as ozone, particulate matter, and diesel exhaust. Athletes' high-calorie diet often relies on processed foods that may contain food emulsifiers and other additives that may cause epithelial barrier dysfunction and microbial dysbiosis. The type of the material used in the sport equipment and clothing and their extensive exposure may increase the inflammatory effects. Excessive travel-related stress, sleep disturbances and different food and microbe exposure may represent additional factors. Here, we review the detrimental impact of toxic agents on epithelial barriers and microbiome; bring a new perspective on the factors affecting the health and performance of athletes and physically active individuals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/all.16221 | DOI Listing |
Anal Chem
September 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
High-fat foods are decomposed into fatty acids during digestion and absorption, primarily occurring in the gastrointestinal tract, and numerous studies have indicated that long-term high-fat diets significantly increase the incidence of intestinal disorders. As a critical intestinal hormone, serotonin (5-hydroxytryptamine, 5-HT) is involved in regulating intestinal peristalsis, secretion, and visceral sensitivity. However, due to the lack of methods capable of reproducing intestinal mechanical activities and in situ monitoring of 5-HT levels, the influence of high-fat diets on intestinal 5-HT release remains unclear.
View Article and Find Full Text PDFHIV-induced gut microbiota dysbiosis perpetuates mucosal barrier disruption and systemic inflammation despite antiretroviral therapy (ART), creating a tumor-permissive microenvironment. This review synthesizes evidence linking HIV-associated microbial alterations to oncogenesis through three convergent metabolic axes: (1) butyrate deficiency impairing epithelial energy metabolism and anti-tumor immunity; (2) tryptophan metabolism dysregulation compromising gut barrier integrity via depletion and -mediated phenylethylamine overproduction; and (3) vitamin B biosynthesis defects disrupting DNA repair and Th1/Th2 balance. Comparative profiling across HIV-associated malignancies-non-Hodgkin lymphoma, cervical cancer, hepatocellular carcinoma, and lung cancer-reveals conserved dysbiotic signatures: depletion of anti-inflammatory taxa (, ) and expansion of pro-inflammatory genera (, ).
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
Aim: Chronic small-intestinal mucositis (CIM) is a severe gastrointestinal complication that has limited treatment options. This study investigated the potential therapeutic effects of Daikenchuto (DKT), a traditional medicine, on mitigating methotrexate (MTX)-induced CIM in rats.
Methods: Male Sprague-Dawley rats were assigned to four groups: control, MTX, DKT-MTX, and DKT.
Front Cell Dev Biol
August 2025
Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy.
The human microbiota is composed of a complex community of microorganisms essential for maintaining host homeostasis, especially in the gastrointestinal tract. Emerging evidence suggests that dysbiosis is linked to various cancers, including colorectal cancer (CRC). The microbiota contributes to CRC development and progression by influencing inflammation, genotoxic stress, and key cell growth, proliferation, and differentiation pathways.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2025
Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China.
The gut microbiota, comprising trillions of bacteria, fungi, and viruses, exists in symbiosis with the host. As the largest microbial ecosystem in the human body. The gut microbiota not only shapes the homeostasis of the intestinal microenvironment through gut-derived metabolites but also exerts regulatory effects on the functions of diverse tissues and organs throughout the body via the intricate "gut-distal organ axis" mechanism.
View Article and Find Full Text PDF