Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil contamination by toxic metals and metalloids poses a grave threat to food security and human well-being. Immobilization serves as an effective method for the remediation of soils contaminated by metal(loid)s. Nevertheless, the ability of soil amendments for simultaneous immobilization of cations and oxyanions, and the long-term effectiveness of immobilization need substantial improvements. In this study, we used a series of layered double hydroxides (LDHs), including Mg-Al LDH and Ca-Al LDH fabricated from pure chemicals, and one waste-derived LDH synthesized using granulated ground blast furnace slag (GGBS), for the immobilization of Cu, Zn, As, and Sb in a historically contaminated soil obscured from a mining-affected region. The LDHs were first subjected to iron (Fe) modification to enhance their short-term immobilization performances toward metal(loid)s. Furthermore, the long-term effectiveness of Fe-modified LDHs was examined via two sets of experiments, including column experiments simulating 2-year water leaching, and accelerated aging experiments simulating 100-year proton attack. It was observed that Fe-modified LDHs, either made from pure chemicals or GGBS, demonstrated promising long-term immobilization performances toward metal(loid)s. Results from this study are encouraging for the future use of LDHs for simultaneous and long-term immobilization of metal(loid)s in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174777DOI Listing

Publication Analysis

Top Keywords

long-term immobilization
12
layered double
8
double hydroxides
8
simultaneous long-term
8
immobilization
8
immobilization metalloids
8
metalloids soil
8
long-term effectiveness
8
pure chemicals
8
immobilization performances
8

Similar Publications

Residues of veterinary antibiotics such as tylosin in soils can induce selective pressure on indigenous soil microbes and increase the dissemination risk of antibiotic resistance genes (ARGs) by horizontal gene transfer (HGT), which poses a serious threat to both soil and public health. While conventional bioremediation methods face challenges in efficiency and stability, enzyme-based approaches offer promising alternatives. This study developed a novel biochar-immobilized tylosin-degrading enzyme (BIE) system to simultaneously address tylosin contamination and antibiotic resistance gene (ARG) proliferation in agricultural soils.

View Article and Find Full Text PDF

A novel ternary synergistic photoelectrochemical (PEC) probe is presented utilizing metal-organic framework (MOF)-templated Pd/CdS@CoS nanocages for sensing chlorpyrifos (CPF) using chronoamperometry under an applied bias of - 65 mV with 465-nm LED illumination. Derived from ZIF-67 via in situ sulfidation, the hollow nanocage architecture integrated CdS nanoparticles with CoS to form a direct Z-scheme heterojunction, while decorating Pd quantum dots (QDs) created a Schottky barrier, implementing a crucial dual charge-transfer enhancement strategy. Density functional theory (DFT) simulations confirmed a 0.

View Article and Find Full Text PDF

Environmental assessment of potential toxic elements in the mining district of Mazarrón (SE, Spain).

Sci Total Environ

September 2025

Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain. Electronic address:

Mining areas are highly susceptible to environmental contamination due to the accumulation of potentially toxic elements (PTEs), necessitating regular monitoring to assess environmental risks. In this study, soil samples were collected from two depths (0-15 cm and 15-30 cm) at 74 stations, along with deep waste samples (0-12 m) from three adjacent tailings ponds in the Mazarrón mining area, Spain. Soil/waste physicochemical properties and the Cd, Cu, Zn, and Pb concentrations of total, water-soluble, and bioavailable fractions were analyzed.

View Article and Find Full Text PDF

An advanced electrochemical immunosensor platform was designed for the precise quantification of cortisol. The sensor design integrates graphene oxide-silicon carbide (GO-SiC) nanocomposites onto a glassy carbon electrode (GCE). Denatured bovine serum albumin (d-BSA) and an anti-cortisol antibody were immobilized on the GO-SiC/GCE surface as part of the immunosensor's design.

View Article and Find Full Text PDF

Pressure ulcers in chronically immobilized patients often become infected with multidrug-resistant organisms such as Pseudomonas aeruginosa. Management is particularly challenging in low-resource settings where advanced wound care products are unavailable. Natural, inexpensive alternatives, such as vinegar and papaya, have demonstrated antimicrobial and debriding properties, but their combined use has not been formally documented.

View Article and Find Full Text PDF