Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Currently, clinical indicators for evaluating endothelial permeability in sepsis are unavailable. Endothelium-derived extracellular vesicles (EDEVs) are emerging as biomarkers of endothelial injury. Platelet endothelial cell adhesion molecule (PECAM) and vascular endothelial (VE)-cadherin are constitutively expressed endothelial intercellular adhesion molecules that regulate intercellular adhesion and permeability. Herein, we investigated the possible association between EDEVs expressing intercellular adhesion molecules (PECAM+ or VE-cadherin+ EDEVs) and endothelial permeability and sepsis severity.

Methods: Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor alpha (TNF-α) directly or after pretreatment with permeability-modifying reagents such as angiopoietin-1, prostacyclin, or vascular endothelial growth factor (VEGF) to alter TNF-α-induced endothelial hyperpermeability. Endothelial permeability was measured using the dextran assay or transendothelial electrical resistance. Additionally, a prospective cross-sectional observational study was conducted to analyze circulating EDEV levels in patients with sepsis. EDEVs were examined in HUVEC culture supernatants or patient plasma (nonsepsis, n = 30; sepsis, n = 30; septic shock, n = 42) using flow cytometry. The Wilcoxon rank-sum test was used for comparisons between 2 groups. Comparisons among 3 or more groups were performed using the Steel-Dwass test. Spearman's test was used for correlation analysis. Statistical significance was set at P < .05.

Results: TNF-α stimulation of HUVECs significantly increased EDEV release and endothelial permeability. Pretreatment with angiopoietin-1 or prostacyclin suppressed the TNF-α-induced increase in endothelial permeability and inhibited the release of PECAM+ and VE-cadherin+ EDEVs. In contrast, pretreatment with VEGF increased TNF-α-induced endothelial permeability and the release of PECAM+ and VE-cadherin+ EDEVs. However, pretreatment with permeability-modifying reagents did not affect the release of EDEVs expressing inflammatory stimulus-inducible endothelial adhesion molecules such as E-selectin, intracellular adhesion molecule-1, or vascular cell adhesion molecule-1. The number of PECAM+ EDEVs on admission in the septic-shock group (232 [124, 590]/μL) was significantly higher (P = .043) than that in the sepsis group (138 [77,267]/μL), with an average treatment effect of 98/μL (95% confidence interval [CI], 2-270/μL), and the number of VE-cadherin+ EDEVs in the septic-shock group (173 [76,339]/μL) was also significantly higher (P = .004) than that in the sepsis group (81 [42,159]/μL), with an average treatment effect (ATE) of 79/μL (95% CI, 19-171/μL); these EDEV levels remained elevated until day 5.

Conclusions: EDEVs expressing intercellular adhesion molecules (PECAM+ or VE-cadherin+ EDEVs) may reflect increased endothelial permeability and could be valuable diagnostic and prognostic markers for sepsis.

Download full-text PDF

Source
http://dx.doi.org/10.1213/ANE.0000000000006988DOI Listing

Publication Analysis

Top Keywords

endothelial permeability
32
intercellular adhesion
20
adhesion molecules
20
ve-cadherin+ edevs
20
endothelial
16
pecam+ ve-cadherin+
16
expressing intercellular
12
permeability sepsis
12
edevs expressing
12
edevs
11

Similar Publications

Blood-Brain Barrier (BBB) dysfunction acts as a key mediator of ischemic brain injury, contributing to brain edema, inflammatory cell infiltration, and neuronal damage. The integrity of the BBB is largely maintained by tight junction proteins, such as Claudin-5, and its disruption exacerbates neurological deficits. Neurokinin B (NKB), a neuropeptide that belongs to the tachykinin family, has been implicated in various physiological processes, including neuroinflammation and vascular function.

View Article and Find Full Text PDF

Organelle stresses and energetic metabolisms promote endothelial-to-mesenchymal transition and fibrosis via upregulating FOSB and MEOX1 in Alzheimer's disease.

Front Mol Neurosci

August 2025

Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, United States.

Introduction: Endothelial-to-mesenchymal transition (EndoMT), cell death, and fibrosis are increasingly recognized as contributing factors to Alzheimer's disease (AD) pathology, but the underlying transcriptomic mechanisms remain poorly defined. This study aims to elucidate transcriptomic changes associated with EndoMT, diverse cell death pathways, and fibrosis in AD using the 3xTg-AD mouse model.

Methods: Using RNA-seq data and knowledge-based transcriptomic analysis on brain tissues from the 3xTg-AD mouse model of AD.

View Article and Find Full Text PDF

Platelet transfusion not only attenuates bleeding and promotes hemostasis but also plays a critical role in vascular stability and endothelial barrier integrity. Under amotosalen-UVA pathogen reduction of platelets, pathogen nucleic acids undergo adduction, which prevents their replication and greatly reduces the risk of transfusion-transmitted infections. Although pathogen-reduced (PR) platelets are increasing in clinical use, the physiologic effects of pathogen reduction on platelets, particularly its impact on platelet-endothelial interactions, have yet to be described.

View Article and Find Full Text PDF

Liver fibrosis, a pivotal pathological stage in the progression of chronic liver diseases to cirrhosis and hepatocellular carcinoma is characterized by liver sinusoidal endothelial cell (LSEC) capillarization, oxidative stress imbalance, and cell pyroptosis. Current clinical interventions show limited efficacy in reversing fibrosis, highlighting the urgent need for novel therapeutic strategies. In this study, we developed an L-arginine-loaded melanin-like nanozyme (L-Arg@MeNPs) that targets liver fibrosis through a triple-action mechanism: (1) sustained nitric oxiderelease from L-Arg restores LSEC fenestration, improving sinusoidal permeability; (2) the MeNPs exhibit catalase/superoxide dismutase-mimicking activity to scavenge reactive oxygen species, thereby blocking the NOD-like receptor pyrin domain-containing 3/caspase-1-mediated pyroptosis pathway; and (3) intrinsic photoacoustic/magnetic resonance dual-modal imaging enables real-time therapeutic monitoring.

View Article and Find Full Text PDF

The underlying mechanisms in atherosclerotic vascular diseases are not entirely clear, posing a challenging hurdle to treatment. Inflammation is a root cause of atherosclerosis (AS); therefore, anti-inflammatory agents have potential for its management. Sweroside, possessing anti-inflammatory properties, emerges as a potential agent to impede AS progression.

View Article and Find Full Text PDF