98%
921
2 minutes
20
We simulate the photodynamics of gas-phase cyclobutanone excited to the S2 state using fewest switches surface hopping (FSSH) dynamics powered by time-dependent density functional theory (TDDFT). We predict a total photoproduct yield of 8%, with a C3:C2 product ratio of 0 trajectories to 8 trajectories. One primary S2 → S1 conical intersection is identified involving the compression of an α-carbon-carbon-hydrogen bond angle. Excited state lifetimes computed with respect to electronic state populations were found to be 3.96 ps (S2 → S1) and 498 fs (S1 → S0). We also generate time-resolved difference pair distribution functions (ΔPDFs) from our TDDFT-FSSH dynamics results in order to generate direct comparisons with ultrafast electron diffraction experiment observables. Global and target analysis of time-resolved ΔPDFs produced a distinct set of lifetimes: (i) a 0.548 ps decay and (ii) a 1.69 ps decay, both resembling the S2 minimum, as well as (iii) a long decay that resembles the S1 minimum geometry and the fully separated C2 products. Finally, we contextualize our results by considering the impact of the most likely sources of significant errors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0203679 | DOI Listing |
Environ Geochem Health
September 2025
Department of Chemistry, Government Arts College(A), Salem, Tamil Nadu, 636007, India.
A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.
View Article and Find Full Text PDFNature
September 2025
Research Center for Industries of the Future, Westlake University, Hangzhou, China.
The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.
View Article and Find Full Text PDFInorg Chem
September 2025
General Education Center, Qinghai Institute of Technology, Xining 810000, China.
Zirconium disilicide (ZrSi) ceramics have excellent physical and chemical properties and are employed in aerospace, energy, and chemical industries. Currently, the preparation and properties of ZrSi ceramics have been less studied. To comprehensively study the characteristics of ZrSi ceramics, in this study, dense bulk ZrSi ceramic samples are successfully prepared by the high-pressure-high-temperature (HPHT) sintering technique.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
September 2025
National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan.
The development of analytical techniques applicable to powdered pharmaceutical co-crystals, including those containing excipients, represents a comprehensive strategy for quality control in both drug development and regulatory settings. This study investigates the structural characterization of indomethacin-nicotinamide co-crystals using a combination of microcrystal electron diffraction (microED), solid-state NMR (SSNMR), Raman spectroscopy, and powder X-ray diffraction (PXRD). MicroED analysis revealed the crystal structure of the co-crystal, while SSNMR measurements provided insights into the molecular interactions within the structure.
View Article and Find Full Text PDFTalanta
September 2025
School of Chemistry, Damghan University, 36716-45667, Damghan, Iran.
Flavonoids are a major class of natural polyphenolic compounds with potent antioxidant, anti-inflammatory and anticancer properties. Among them, quercetin and catechin have been widely studied due to their significant health benefits and potent free radical scavenging activity. The efficient extraction and separation of these structurally similar antioxidants remains challenging, necessitating the development of high-performance adsorbents.
View Article and Find Full Text PDF