Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Head and Neck Squamous Cell Carcinoma (HNSCC) remains a significant health burden due to tumor heterogeneity and treatment resistance, emphasizing the need for improved biological understanding and tailored therapies. This study enrolled 31 HNSCC patients for the establishment of patient-derived tumor organoids (PDOs), which faithfully maintained genomic features and histopathological traits of primary tumors. Long-term culture preserved key characteristics, affirming PDOs as robust representative models. PDOs demonstrated predictive capability for cisplatin treatment responses, correlating drug sensitivity with patient outcomes. Bulk and single-cell RNA sequencing unveiled molecular subtypes and intratumor heterogeneity (ITH) in PDOs, paralleling patient tumors. Notably, a hybrid epithelial-mesenchymal transition (hEMT)-like ITH program is associated with cisplatin resistance and poor patient survival. Functional analyses identified amphiregulin (AREG) as a potential regulator of the hybrid epithelial/mesenchymal state. Moreover, AREG contributes to cisplatin resistance via EGFR pathway activation, corroborated by clinical samples. In summary, HNSCC PDOs serve as reliable and versatile models, offer predictive insights into ITH programs and treatment responses, and uncover potential therapeutic targets for personalized medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244938PMC
http://dx.doi.org/10.1101/2024.06.28.601068DOI Listing

Publication Analysis

Top Keywords

patient-derived tumor
8
head neck
8
neck squamous
8
squamous cell
8
cell carcinoma
8
treatment responses
8
cisplatin resistance
8
pdos
5
genomic single-cell
4
single-cell characterization
4

Similar Publications

Discovery of APS03118, a Potent and Selective Next-Generation RET Inhibitor with a Novel Kinase Hinge Scaffold.

J Med Chem

September 2025

Applied Pharmaceutical Science, Inc., Building 10-1, No.2, Jingyuan North Street, BDA, Beijing 100176, China.

This study reports the discovery and preclinical activity of APS03118, a novel selective RET inhibitor featuring a novel tricyclic pyrazolo[3',4':3,4]pyrazolo[1,5-]pyridine hinge-binding scaffold designed to overcome acquired resistance to first-generation selective RET inhibitors (SRIs). By enhancing hydrogen bonding with conserved hinge residues (Glu805, Ala807), APS03118 potently inhibits wild-type RET and diverse resistance mutations, including solvent-front (G810R/S/C), gatekeeper (V804M/L/E), roof (L730I/M), and hinge (Y806C/N/H) variants. In preclinical models, APS03118 induced complete tumor regression in KIF5B-RET and CCDC6-RET V804 M patient-derived xenografts (PDXs) and significantly prolonged survival in an intracranial CCDC6-RET metastasis model.

View Article and Find Full Text PDF

The Discovery of RP-2119: A Potent, Selective, and Orally Bioavailable Polθ ATPase Inhibitor.

J Med Chem

September 2025

Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9 Montréal, Québec, Canada.

DNA polymerase theta (Polθ) plays a critical role in repairing DNA double-strand breaks through microhomology-mediated end joining (MMEJ) and has emerged as a key synthetic lethal drug target in cancers with homologous recombination (HR) deficiencies. Its inhibition has shown a strong potential to synergize with PARP inhibitors, particularly in tumors with deleterious or mutations. Here, we describe the discovery and preclinical development of RP-2119, a selective, potent, and bioavailable Polθ ATPase inhibitor.

View Article and Find Full Text PDF

Metastatic and relapsed osteosarcoma (OS) remains difficult to treat despite advanced surgical techniques, intensified chemotherapy, and targeted therapies. Adoptive immunotherapies such as chimeric antigen receptor (CAR) T cells, are in their nascent stage, but remain a viable therapeutic strategy for patients with aggressive solid tumors such as OS. Folate receptor- (FOLR1) has been functionally implicated in OS pathophysiology, providing rationale as a potential therapeutic target.

View Article and Find Full Text PDF

The translatability of patient-derived xenograft (PDX)-generated clinical data into patient-specific outcomes for therapeutic guidance is limited by the challenges in generalizability of models across patients, treatments, and cancer types. Previously, machine learning (ML) models have been developed for the two most abundant cancer types, i.e.

View Article and Find Full Text PDF

An integrated approach is proposed to rapidly evaluate the effects of anticancer treatments in 3D models, combining a droplet-based microfluidic platform for spheroid formation and single-spheroid chemotherapy application, label-free morphological analysis, and machine learning to assess treatment response. Morphological features of spheroids, such as size and color intensity, are extracted and selected using the multivariate information-based inductive causation algorithm, and used to train a neural network for spheroid classification into viability classes, derived from metabolic assays performed within the same platform as a benchmark. The model is tested on Ewing sarcoma cell lines and patient-derived xenograft (PDX) cells, demonstrating robust performance across datasets.

View Article and Find Full Text PDF