98%
921
2 minutes
20
Introduction: Great strides have been made identifying molecular and genetic changes expressed by various tumor types. These molecular and genetic changes are used as pharmacologic targets for precision treatment using large molecule (LM) proteins with high specificity. Theranostics exploits these LM biomolecules via radiochemistry, creating sensitive diagnostic and therapeutic agents. Intravenous (i.v.) LM drugs have an extended biopharmaceutical half-life thus resulting in an insufficient therapeutic index, permitting only palliative brachytherapy due to unacceptably high rates of systemic nontarget radiation doses to normal tissue. We employ tumor arteriole embolization isolating a tumor from the systemic circulation, and local intra-arterial (i.a.) infusion to improve uptake of a LM drug within a porcine renal tumor (RT).
Methods: In an oncopig RT we assess the in vivo biodistribution of Tc-labeled macroaggregated albumin (MAA) a surrogate for a LM theranostics agent in the RT, kidney, liver, spleen, muscle, blood, and urine. Control animals underwent i.v. infusion and experimental group undergoing arteriography with pseudovascular isolation (PVI) followed by direct i.a. injection.
Results: Injected dose per gram (%ID/g) of the LM at 1 min was 86.75 ± 3.76 and remained elevated up to 120 min (89.35 ± 5.77) with i.a. PVI, this increase was statistically significant (SS) compared to i.v. (13.38 ± 1.56 and 12.02 ± 1.05; p = 0.0003 p = 0.0006 at 1 and 120 min respectively). The circulating distribution of LM in the blood was less with i.a. vs i.v. infusion (2.28 ± 0.31 vs 25.17 ± 1.84 for i.v. p = 0.033 at 1 min). Other organs displayed a trend towards less exposure to radiation for i.a. with PVI compared to i.v. which was not SS.
Conclusion: PVI followed by i.a. infusion of a LM drug has the potential to significantly increase the first pass uptake within a tumor. This minimally invasive technique can be translated into clinical practice, potentially rendering monoclonal antibody based radioimmunotherapy a viable treatment for renal tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nucmedbio.2024.108939 | DOI Listing |
Neuropathol Appl Neurobiol
October 2025
Division of Rheumatology and Systemic Inflammatory Diseases, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Aims: Sarcoid myopathy (SaM) is characterised by granulomatous myositis (GM) and can overlap with inclusion body myositis (IBM), a late-onset chronic idiopathic inflammatory myopathy with a still enigmatic pathogenesis. As GM can occur in different clinical contexts, we aimed to examine the histomorphologic features and gene expression profiles in cases of definite SaM that may inform diagnostic and therapeutic considerations.
Methods: We performed a multidimensional characterisation of muscle biopsy specimens from patients with 'pure SaM' (n=17), SaM with concomitant IBM (SaM-IBM) (n=2), including histopathologic and ultrastructural analysis in addition to quantitative real-time polymerase chain reaction.
J Chem Phys
September 2025
Yusuf Hamied Department of Chemistry. Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Folding and unfolding in molecules as simple as short hydrocarbons and as complicated as large proteins continue to be an active research field. Here, we investigate folding in n-C14H30 using both density functional theory (DFT)/B3LYP calculations of 27 772 local minima and a kinetic transition network calculated for a previously reported potential energy surface (PES) obtained by fitting roughly 250 000 B3LYP energies. In addition to generating a database of minima and the transition states that connect them, these calculations and the PES based on them have been used to develop a simple and accurate model for the energy landscape.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Center for Advanced Structural Materials, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
Increasing evidences show the significance of low melting entropy in glass formation of substances. Our previous studies have uncovered the strong dependence between melting entropy in the eutectic mixtures and mixing enthalpy, which has been serving as an important reference for glass formation, showing that negative mixing enthalpy largely reduces the melting entropy. In this paper, we focused on the question as to how melting entropy is associated with another classical glass formation criterion of molecule/atom size difference of components.
View Article and Find Full Text PDFSmall
September 2025
Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
The design of a rare combination of interpenetrated and catenated 3D+2D→3D MOF {[Cd(dim)(dht)(HO)](Sol)} (1), with a unique network and extreme pH stability, has been developed for exceptional ionic conduction across a wide range of temperature and humidity conditions. The bare pore derivative of 1 (1') features remarkable structural flexibility and large pores accessible to encapsulate molecules such as NH, HCl, and KOH, enabling it to function as an efficient conductor for both proton and hydroxide ions. 1' demonstrates substantial thermal-influenced proton conductivity of 4.
View Article and Find Full Text PDFAnal Methods
September 2025
Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins that pose great health threats to humans. Herein, an aptasensor-based fluorescent signal amplification strategy is developed for the detection of AFB1. Initially, the AFB1 aptamers labelled with carboxyfluorescein (FAM) are adsorbed onto graphene oxide (GO), triggering energy transfer.
View Article and Find Full Text PDF