A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Carbon defects-enriched NBC-CN@CoMn with ultrafast modulation of redox couples for efficient degradation of contaminant. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The inefficiency of catalysts in sulfate radical-based advanced oxidation processes (SR-AOPs) is primarily attributed to the sluggish circulation of redox couples. Herein, a carbon defects-enriched NBC-CN@CoMn (NCC) was synthesized through a self-assembly approach. The carbon defects within the NCC induce the electron trap effect, thereby facilitating the efficient cycling of redox couples in photo-Fenton-like processes during contaminant degradation. This effect enables the self-regeneration of the NCC catalyst. The reductive redox couples (Co (II) and Mn (II)) are continuously regenerated following the degradation process. Within the NCC, CoMn layered double hydroxides (LDHs) act as primary active sites, promoting the generation of hydroxyl radicals (•OH), sulfate radicals (SO) and singlet oxygen (O) through continuous electron gain and loss. Additionally, the internal electric field established within the NCC further accelerates electron transfer. Density Functional Theory (DFT) calculations confirm that the carbon defects-enriched NCC exhibits lower adsorption energies and higher electron transfer efficiencies than carbon defect-deficient NCC. This study introduces a novel photocatalyst with self-regenerating capabilities, presenting an innovative approach to regulate redox couples in SR-AOPs for sustainable degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.121723DOI Listing

Publication Analysis

Top Keywords

redox couples
20
carbon defects-enriched
12
defects-enriched nbc-cn@comn
8
electron transfer
8
ncc
7
carbon
5
redox
5
couples
5
nbc-cn@comn ultrafast
4
ultrafast modulation
4

Similar Publications