98%
921
2 minutes
20
The mzIdentML data format, originally developed by the Proteomics Standards Initiative in 2011, is the open XML data standard for peptide and protein identification results coming from mass spectrometry. We present mzIdentML version 1.3.0, which introduces new functionality and support for additional use cases. First of all, a new mechanism for encoding identifications based on multiple spectra has been introduced. Furthermore, the main mzIdentML specification document can now be supplemented by extension documents which provide further guidance for encoding specific use cases for different proteomics subfields. One extension document has been added, covering additional use cases for the encoding of crosslinked peptide identifications. The ability to add extension documents facilitates keeping the mzIdentML standard up to date with advances in the proteomics field, without having to change the main specification document. The crosslinking extension document provides further explanation of the crosslinking use cases already supported in mzIdentML version 1.2.0, and provides support for encoding additional scenarios that are critical to reflect developments in the crosslinking field and facilitate its integration in structural biology. These are: (i) support for cleavable crosslinkers, (ii) support for internally linked peptides, (iii) support for noncovalently associated peptides, and (iv) improved support for encoding scores and the corresponding thresholds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.202300385 | DOI Listing |
JMIR Res Protoc
September 2025
Institute of Higher Education and Research in Healthcare, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
Background: In pediatric intensive care units, pain, sedation, delirium, and iatrogenic withdrawal syndrome (IWS) must be managed as interrelated conditions. Although clinical practice guidelines (CPGs) exist, new evidence needs to be incorporated, gaps in recommendations addressed, and recommendations adapted to the European context.
Objective: This protocol describes the development of the first patient- and family-informed European guideline for managing pain, sedation, delirium, and IWS by the European Society of Paediatric and Neonatal Intensive Care.
Radiol Med
September 2025
Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy.
Metastatic involvement (MB) of the breast from extramammary malignancies is rare, with an incidence of 0.09-1.3% of all breast malignancies.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2025
Forefront Research Center, Graduate School of Science, The University of Osaka, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
This study explores the computational isolation of prostaglandin (PG) isomers, specifically PG E (PGE) and D (PGD), to enhance method development efficiency and provide insights into their retention behavior during supercritical fluid extraction (SFE) combined with supercritical fluid chromatography (SFC)-tandem mass spectrometry (MS/MS). Although PGE and PGD are positional isomers that yield identical product ions in MS/MS, they serve distinct biological roles. This research illustrates the efficacy of selected reaction monitoring (SRM)-based techniques for differentiating coeluting isomers.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu P. R. China.
Advances in molecular analysis and characterization techniques should revolutionize the methods for scientific exploration across physics, chemistry, and biology, fundamentally overturning our understanding of interactions and processes that govern molecular behavior at the microscopic level. Currently, the absence of a molecular analysis method that can both quantify molecules and achieve single-molecule spatial resolution hinders our study of complex molecular systems in sorption and catalysis. Here, we propose a quantitative analysis strategy for small molecules confined in ZSM-5, a zeolite material extensively used in catalysis and gas separation, based on low-dose transmission electron microscopy.
View Article and Find Full Text PDFmSystems
September 2025
Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
Genome-scale metabolic models (GEMs) are widely used in systems biology to investigate metabolism and predict perturbation responses. Automatic GEM reconstruction tools generate GEMs with different properties and predictive capacities for the same organism. Since different models can excel at different tasks, combining them can increase metabolic network certainty and enhance model performance.
View Article and Find Full Text PDF