98%
921
2 minutes
20
The development of new antibiotics continues to pose challenges, particularly considering the growing threat of multidrug-resistant Staphylococcus aureus. Structurally diverse natural products provide a promising source of antibiotics. Herein, we outline a concise approach for the collective asymmetric total synthesis of polycyclic xanthene myrtucommulone D and five related congeners. The strategy involves rapid assembly of the challenging benzopyrano[2,3-a]xanthene core, highly diastereoselective establishment of three contiguous stereocenters through a retro-hemiketalization/double Michael cascade reaction, and a Mitsunobu-mediated chiral resolution approach with high optical purity and broad substrate scope. Quantum mechanical calculations provide insight into stereoselective construction mechanism of the three contiguous stereocenters. Additionally, this work leads to the discovery of an antibacterial agent against both drug-sensitive and drug-resistant S. aureus. This compound operates through a unique mechanism that promotes bacterial autolysis by activating the two-component sensory histidine kinase WalK. Our research holds potential for future antibacterial drug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245619 | PMC |
http://dx.doi.org/10.1038/s41467-024-49629-8 | DOI Listing |
ACS Electrochem
September 2025
Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Bipolar membranes (BPMs) are increasingly recognized as a promising electrolyte option for water electrolysis, attributable to their distinctive properties derived from the membrane's layered structure, which consists of an anion exchange (AEL) and a cation exchange layer (CEL). This study investigates four different BPMs and the influence they have on the performance of a water electrolysis cell under two different feed configurations: (1) a symmetric deionized water feed to both anode and cathode compartments and (2) an asymmetric feed with a 0.5 mol/L NaCl catholyte feed and a deionized water anolyte feed.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
The asymmetrical nature of the relationship between social workers and their clients may lead to abuse of power due to a human trait or corruption. A high level of power sensitivity is thus crucial to counteract power abuse. Ideally, this topic should be covered during studies, as the risk of corruption rises with everyday working life.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Department of Chemistry & Biochemistry, North Dakota State University, Fargo-58102, USA.
The Mukaiyama-Michael (M-M) reaction is a powerful approach for carbon-carbon bond formation and can provide access to all-carbon quaternary centers and vicinal stereocenters. The use of chiral catalysts for this transformation has enabled the development of efficient asymmetric methods in which the reaction proceeds with high enantioselectivity in the presence of only a substoichiometric amount of the chiral promoter. Both chiral Lewis acid catalysts and organocatalysts have been employed.
View Article and Find Full Text PDFOrg Lett
September 2025
School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China.
The first asymmetric total synthesis of 5,10-seco-neoansamycin A, a 19-membered cyclic octaketide, was achieved in 20 steps (with several steps being telescoped) and 6.7% overall yield starting from the reported compound, thus leading to the assignment of its absolute configuration. This convergent synthetic approach features late-stage macrolactamization, a judicious application of an asymmetric aldol reaction.
View Article and Find Full Text PDFOrg Lett
September 2025
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
A concise and efficient asymmetric total synthesis of bicyclic-THP-lactone natural products passifetilactone D and cryptorigidifoliol I and four of the stereoisomers of proposed cryptorigidifoliol B has been achieved, enabled by Maruoka/Reetz or Maruoka/Brown allylations and Ghosez lactonization. Although the required diastereomers of cryptorigidifoliol B are synthesized now, with the mismatch of data to that of the natural isolate, its actual structure could not be ascertained, indicating a need for further structure revision.
View Article and Find Full Text PDF