98%
921
2 minutes
20
A thorough comprehension of nitrogen biogeochemical processes in the vadose zone is crucial for the effective prevention and remediation of soil-groundwater system contamination. Despite the growing research on this subject, the full scope of nitrogen biogeochemical characterization in different geological environments remains poorly understood. This study addresses this knowledge gap by integrating geochemical, microbiological and numerical simulation approaches to gain a deeper insight into nitrogen biogeochemistry in agriculture. Our findings indicate the biogeochemical behavior of nitrogen in the vadose zone is mediated by microorganisms, driven by hydraulics, influenced by geological conditions and environmental factors. Along the groundwater flow, NH-N was found to be heavily accumulated in the topsoil of 0-40 cm, while NO-N was transported and driven by hydrodynamics from both vertical and horizontal directions. Microbial diversity, species composition and functional microorganisms were significantly influenced by soil depth, rather than geomorphological types. Oxidation-reduction potential (ORP), total organic carbon (TOC), soil moisture (MOI), bicarbonate (HCO), and ferrous (Fe) were identified as the principal environmental factors that regulate nitrogen metabolism and the dominant biochemical processes, encompassing nitrogen fixation, nitrification, and denitrification. Driven by hydrodynamics, NH-N, NO-N and NO-N tend to form distinct biochemical reaction zones in the vertical vadose zone. These areas are dynamic and subject to geomorphologies. It should be noted that NO-N can migrate towards groundwater from the clayey sand in the Alluvial Plain, which presents a potential risk of groundwater contamination. The fissure structure of loess may serve as the major transport pathway for groundwater nitrogen contamination in the Loess Tableland. This finding highlights the importance of integrating microbiology, geochemistry and hydraulics to elucidate the biogeochemical processes of nitrogen in the vadose zone with a dynamic mindset.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174687 | DOI Listing |
An Acad Bras Cienc
September 2025
Federal University of Minas Gerais, Department of Sanitary and Environmental Engineering, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-010 Belo Horizonte, MG, Brazil.
Micro- and nanoplastics (MNPs) are emerging contaminants increasingly recognized for their environmental and health implications. While surface water systems have been extensively studied, the presence, behavior, and impacts of MNPs in groundwater remain underexplored, despite its critical role as water source worldwide. The findings in this review highlight that agricultural activities, particularly plastic mulches, pesticides containers, fertilizer bags, greenhouses, are major sources of MNP.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Ecohydrology and High Efficient Utilization of Water Resources, Hohhot, 010018, China; Inner Mongolia Section of the Yellow
Large-scale underground coal mining alters regional water cycles, yet the mechanisms governing interactions among water bodies in deep mining areas are poorly understood. For this purpose, by integrating hydrogen and oxygen isotopes, water levels, hydrogeological conditions, and end-member mixing analysis (EMMA), this study systematically analyzed and quantified the circulation and transformation mechanisms among different water bodies influenced by coal mining. Key findings reveal: (1) Mining-induced fractures disrupt the aquitard above the coal seam, establishing a direct hydraulic link between Zhiluo Formation confined groundwater and mine water, with the former contributing 87.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University (FSU), Jena, Germany.
Subsurface habitats, found under various geological conditions, exhibit diverse microbial communities. The vadose zone, a previously unexplored subsurface compartment, connects the surface to phreatic groundwater. Drilling into the subsurface allows access to these habitats for microbial diversity study.
View Article and Find Full Text PDFEnviron Pollut
August 2025
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China. Electronic address:
Groundwater plays a pivotal role in mediating nitrogen transfer to aquatic ecosystems, particularly in arid regions. Water scarcity, coupled with intensive agricultural activities, has placed the groundwater systems under significant pressure from non-point source pollution, underscoring the need for targeted investigation. Focusing on the Chinese Loess Plateau (CLP), we combined dual-isotope analysis (δN-NO, δO-NO) with water isotopes (δD-HO, δO-HO) and implemented a dual-framework approach to investigate nitrate dynamics.
View Article and Find Full Text PDFLangmuir
August 2025
Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden.
The geochemical behaviors of phosphate-containing species at mineral surfaces are of fundamental importance for controlling phosphorus (P) mobility, fate, and bioavailability. Understanding these interfacial behaviors in water-unsaturated environments, where minerals are covered by thin water films, is of special importance in the context of soil vadose zone geochemistry. This study resolved the transformation of pyrophosphate to orthophosphate within the confines of nanometer-thick water films condensed on nanosized birnessite (MnO).
View Article and Find Full Text PDF