98%
921
2 minutes
20
Introduction: , a crucial commercial crop and a fundamental component of traditional Chinese medicine, is renowned for its abundant production of volatile terpenoids. However, the lack of available genomic information has hindered pertinent research efforts in the past.
Methods: To bridge this gap, the present study aimed to use PacBio HiFi, short-read, and highthroughput chromosome conformation capture sequencing to construct a chromosome-level assembly of the genome.
Results And Discussion: With twelve chromosomes accounting for 99.82% (766.69 Mb) of the final genome assembly, which covered 768.10 Mb, it was very complete. Remarkably, the assembly's contig and scaffold N50 values are exceptional as well-41.12 and 63.78 Mb, respectively-highlighting its excellent quality and intact structure. Furthermore, a total of 39,173 protein-coding genes were predicted, with 38,766 (98.96%) of them being functionally annotated. The completeness of the genome was confirmed by the Benchmarking Universal Single-Copy Ortholog evaluation, which revealed 99.01% of highly conserved plant genes. As the first comprehensive assembly of the genome, it provides a crucial starting point for deciphering the complex pathways involved in terpenoid production. Furthermore, this excellent genome serves as a vital resource for upcoming research on the breeding and genetics of .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238478 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1372127 | DOI Listing |
J Appl Microbiol
September 2025
Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan.
Aims: This study aims to investigate the genomic profile of a multidrug-resistant Escherichia coli strain, 160-11H1, co-carrying an extended-spectrum β-lactamase (ESBL) and the plasmid-mediated mobile colistin resistance gene, mcr-5.
Methods And Results: The entire genome of the strain was sequenced using Illumina MiSeq and Oxford Nanopore platforms, and de novo assembly was performed using Unicycler. The genome size was 5 031,330 bp and comprised 5 140 coding sequences.
mSystems
September 2025
Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
A significant challenge in the field of microbiology is the functional annotation of novel genes from microbiomes. The increasing pace of sequencing technology development has made solving this challenge in a high-throughput manner even more important. Functional metagenomics offers a sequence-naive and cultivation-independent solution.
View Article and Find Full Text PDFG3 (Bethesda)
September 2025
INRAE, UR629 URFM, Ecologie des Forêts Méditerranéennes, Site Agroparc, Domaine Saint Paul, F-84914 Avignon Cedex 9, France.
Symphonia globulifera (Clusiaceae) has emerged as a model organism in tropical forest ecology and evolution due to its significant ecological role and complex biogeographical history. Originating from Africa, this species has independently colonized Caribbean, Central and South America three times, becoming a key component of tropical ecosystems across these regions. Despite the ecological importance of S.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
Plant roots are colonised by diverse communities of microorganisms that can affect plant growth and enhance plant resistance to (a) biotic stresses. We investigated the role of the indigenous soil microbiome in the resistance of tomato to the invasive sap-sucking insect Prodiplosis longifila (Diptera: Cecidomyiidae). Native and agricultural soils were sampled from the Andes in Southern Ecuador and tested, in greenhouse bioassays, for leaf tissue damage caused by P.
View Article and Find Full Text PDFGenome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDF