98%
921
2 minutes
20
Microplastics is known to be ubiquitous in aquatic environment. Quantification of microplastics in natural waters is an important problem of analytical chemistry, the solution of which is needed for the assessment of water quality and potential risks for water inhabitants and consumers. Separation methods play a key role in the correct quantification of microplastics in natural waters. In the present study the applicability of countercurrent chromatography to the continuous-flow separation and preconcentration of microplastics from water samples in rotating coiled column (RCC) using water-oil systems has been demonstrated for the first time. The effect of column rotation speed and mobile phase (water) flow rate on the retention of the stationary (oil) phase in RCC is studied. The retention parameters of 10 vegetable and 2 synthetic oils are determined. Castor, olive, rapeseed, soybean, linseed, sesame, and sunflower oils are found to be applicable to the separation of microplastics from water samples using RCC. Taking as example polyethylene microparticles of different size (40-63, 63-100, and 100-250 μm), the high recovery of microplastics (about 100 %) from aqueous phase into castor and rapeseed oils is shown. The method has been proven to be efficient for the separation of microplastics from simulated fresh and sea natural waters. It may be perspective not only for the quantification of microplastics in natural waters but as well as for the purification of wastewaters containing microplastics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126504 | DOI Listing |
Chemistry
September 2025
Department of Chemistry, Birla Institute of Technology and Science-Pilani, K K Birla Goa Campus, Zuarinagar, Goa, 403726, India.
This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P.R. China.
Developing artificial hosts with temperature-driven conformational switching behaviors facilitates our understanding of the temperature-dependent allostery and adaptation mechanisms in natural recognition systems. Herein, we report the design and synthesis of three pairs of water-soluble, enantiomeric binaphthalene-based tetraimidazolium macrocycles (SS/RR-1•4Cl- - SS/RR-3•4Cl-) as artificial hosts for exploring sequence-selective recognition of dinucleotides in aqueous media. Owing to the reversible rotational conformation of axially chiral binaphthyl units, SS-1•4Cl- demonstrates the conformational switching, converting from cis-conformation (SS-1) to trans-conformation (SS-1) by increasing temperature, thereby causing the recognition cavity to transition from a closed to an open state.
View Article and Find Full Text PDFAmbio
September 2025
Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Stockholm, Sweden.
This study investigates how the seven core resilience principles are integrated into assessments of forest system resilience to natural or human-induced disturbances across engineering, ecological, and social-ecological resilience concepts. Following PRISMA guidelines, a literature search in the Web of Science database using the keywords "resilience", "forest" and "ecosystem services" yielded 1828 studies, of which 330 met the selection criteria. The most commonly used criterion was diversity, a sub-criterion of "diversity and redundancy", appearing in 50% of studies.
View Article and Find Full Text PDFEnviron Geochem Health
September 2025
Department of Chemistry, Government Arts College(A), Salem, Tamil Nadu, 636007, India.
A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.
View Article and Find Full Text PDFNature
September 2025
Institute for Atmospheric and Climate Science, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
Extreme event attribution assesses how climate change affected climate extremes, but typically focuses on single events. Furthermore, these attributions rarely quantify the extent to which anthropogenic actors have contributed to these events. Here we show that climate change made 213 historical heatwaves reported over 2000-2023 more likely and more intense, to which each of the 180 carbon majors (fossil fuel and cement producers) substantially contributed.
View Article and Find Full Text PDF