Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Whiteflies () are a significant pest of cucurbits and vector many viruses, leading to substantial economic losses. Modern diagnostic tools offer the potential for early detection of viruses in the whiteflies before crop production. One such tool is the multiplex reverse transcriptase quantitative PCR (RT-qPCR) probe-based technique, which can detect multiple targets in a single reaction and simultaneously quantify the levels of each target, with a detection limit of 100 copies per target. In this study, a multiplex RT-qPCR-based detection system capable of identifying one DNA virus and three RNA viruses in whiteflies-cucurbit leaf crumple virus (CuLCrV), cucurbit chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder virus (CYSDV), and squash vein yellowing virus (SqVYV)-was developed. To ensure the reliability of the assay, an internal gene control as the fifth target to monitor false-negative results was incorporated. This newly developed molecular diagnostic tool possesses several advantages. It can detect up to five desired targets from a single whitefly RNA sample, even at concentrations as low as 1 ng/μl. To evaluate its sensitivity, we conducted experiments using serially diluted cloned plasmids and in vitro transcribed RNA transcripts of the target viruses. We also assessed the specificity of the assay by including aphid-transmitted viruses and other viruses known to infect cucurbits. The diagnostic method successfully detected all five targets simultaneously and allowed for the quantification of up to 100 copies using a mixture of healthy RNA and in vitro transcribed RNA. Our aim with this study was to develop a highly specific and sensitive one-step multiplex RT-qPCR system for the simultaneous detection of viruses transmitted by whiteflies in cucurbits. This system offers significant advantages for early detection, enabling prompt control measures to mitigate the further spread of viral infections and reduce yield losses. Additionally, we demonstrated the ability to simultaneously detect mixed viruses (CCYV, CYSDV, CuLCrV, and SqVYV) in individual whiteflies and quantify the number of viral copies carried by each whitefly. The multiplex RT-qPCR assay outperforms currently available techniques for detecting many samples at a given time and can be effectively utilized for early monitoring of plant viruses in individual whiteflies and symptomless plants.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-09-23-1964-REDOI Listing

Publication Analysis

Top Keywords

multiplex rt-qpcr
12
viruses
10
rt-qpcr assay
8
simultaneous detection
8
viruses individual
8
early detection
8
detection viruses
8
targets single
8
100 copies
8
vitro transcribed
8

Similar Publications

Clinical, virological, and antibody profiles of overlapping dengue and chikungunya virus infections in children from southern Colombia.

PLoS Negl Trop Dis

September 2025

División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia.

Background: Dengue and chikungunya are arboviral diseases with overlapping clinical characteristics. Dengue virus (DENV) is endemic in Colombia, and in 2014/2015, the chikungunya virus (CHIKV) caused an epidemic that resulted in over 350,000 cases. Since then, both viruses have been actively co-circulating.

View Article and Find Full Text PDF

Canine Infectious Respiratory Disease Complex (CIRDC), caused by a diverse range of viral and bacterial pathogens, is the leading cause of respiratory illness in dogs. In the winter of 2023-2024, the United States experienced a noticeable increase in cases consistent with CIRDC. This study investigated the potential association of emerging pathogens with CIRDC cases.

View Article and Find Full Text PDF

Biomarkers have gained tremendous attention in recent years, as they offer reliable detection of diseases such as cancers and other health conditions. However, with the recent realization that one biomarker can be associated with more than one disease (cross-talk), there is a significant shift toward simultaneous monitoring of more than one biomarker to increase the accuracy of diagnosis. Despite a sizable effort made over the last several years, multiplexing using the common techniques including surface-enhanced Raman spectroscopy (SERS), microarrays, RT-qPCR, nanostring, fluorescence, and others requires target amplification, target labeling, or the use of additional probes/actuators, and hence, these requirements complicate the experiments and data analyses.

View Article and Find Full Text PDF

Limited surveillance and laboratory testing for non-influenza viruses remains a challenge in Uganda. The World Health Organization (WHO) designated National Influenza Center (NIC) tested samples from patients with influenza-like illness (ILI) and severe acute respiratory infections (SARIs) during August 2022-February 2023. We leveraged the influenza sentinel surveillance system to detect other respiratory viruses (ORVs).

View Article and Find Full Text PDF

Magnetic Nanoparticle-Assisted Multiplex RPA for Rapid Meat Authentication via Fluorescence Detection.

J Agric Food Chem

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food Science and Engineering, Ningbo University, Ningbo 3158

Meat adulteration with undeclared species remains a pervasive problem. We report a rapid, sensitive, and field-deployable assay-termed magnetic nanoparticle-assisted multiplex recombinase polymerase amplification (mRPA) with fluorescence detection for the simultaneous detection of horse and chicken components in meat. It integrates mRPA, streptavidin-coated core-shell FeO@SiO nanoparticles, and dual-labeled primers targeting ATP6-8 (horse) and CYTB (chicken) genes.

View Article and Find Full Text PDF