98%
921
2 minutes
20
Noise is a ubiquitous component of motor systems that leads to behavioral variability of all types of movements. Nonetheless, systems-based models investigating human movements are generally deterministic and explain only the central tendencies like mean trajectories. In this paper, a novel approach to modeling kinematic variability of movements is presented and tested on the oculomotor system. This approach reconciles the two prominent philosophies of saccade control: displacement-based control versus velocity-based control. This was achieved by quantifying the variability in saccadic eye movements and developing a stochastic model of its control. The proposed stochastic dual model generated significantly better fits of inter-trial variances of the saccade trajectories compared to existing models. These results suggest that the saccadic system can flexibly use the information of both desired displacement and velocity for its control. This study presents a potential framework for investigating computational principles of motor control in the presence of noise utilizing stochastic modeling of kinematic variability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-024-06870-3 | DOI Listing |
Front Bioeng Biotechnol
August 2025
The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou City, Fujian, China.
Objective: This study investigates the biomechanical effects of long-term Tai Chi practice on the knee meniscus through biomechanical experimentation and finite element simulation, focusing on practitioners performing Knee Brushing and Twisting Step. The findings aim to establish scientific guidelines for optimizing exercise protocols in middle-aged and elderly populations.
Methods: Twenty male middle-aged and elderly practitioners were recruited, divided into a Beginner Group (BG: n = 10), and an Experienced Group (EG: n = 10).
PNAS Nexus
September 2025
Laboratoire Charles Coulomb (L2C), Université de Montpellier and CNRS (UMR 5221), Montpellier 34095, France.
Active-matter systems are inherently out-of-equilibrium and perform mechanical work by utilizing their internal energy sources. Breakdown of time-reversal symmetry (BTRS) is a hallmark of such dissipative nonequilibrium dynamics. We introduce a robust, experimentally accessible, noninvasive, quantitative measure of BTRS in terms of the Kullback-Leibler divergence in collision events, demonstrated in our novel artificial active matter, comprised of battery-powered spherical rolling robots whose energetics in different modes of motion can be measured with high precision.
View Article and Find Full Text PDFJ Biomech
September 2025
Human Movement Laboratory, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia; Translational Health Research Institute, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.
Hip osteoarthritis (OA) is an increasingly significant public health concern, contributing to substantial economic and societal burden worldwide. Emerging evidence suggests that running may promote cartilage health through optimal joint loading. However, it remains unclear how modifications to running posture, such as altering footstrike patterns or adjusting foot progression angles, affect hip contact forces (HCF).
View Article and Find Full Text PDFComput Biol Med
September 2025
Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. Electronic address:
Lameness in dairy cattle is a prevalent issue that significantly impacts both animal welfare and farm productivity. Traditional lameness detection methods often rely on subjective visual assessment, focusing on changes in locomotion and back curvature. However, these methods can lack consistency and accuracy, particularly for early-stage detection.
View Article and Find Full Text PDFInt J Med Robot
October 2025
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.
Background: The limited workspace and strong magnetic field inside MRI challenge the design of the prostate puncture robot. Simplifying the robot's structure is crucial.
Methods: This paper proposes a parallel cable-driven (PCD) prostate puncture robot, and conducts a preliminary material design.