98%
921
2 minutes
20
Within the nucleus, structural maintenance of chromosome protein complexes, namely condensin and cohesin, create an architecture to facilitate the organization and proper function of the genome. Condensin, in addition to performing loop extrusion, creates localized clusters of chromatin in the nucleolus through transient crosslinks. Large-scale simulations revealed three different dynamic behaviors as a function of timescale: slow crosslinking leads to no clusters, fast crosslinking produces rigid slowly changing clusters, while intermediate timescales produce flexible clusters that mediate gene interaction. By mathematically analyzing different relative scalings of the two sources of stochasticity, thermal fluctuations and the force induced by the transient crosslinks, we predict these three distinct regimes of cluster behavior. Standard time-averaging that takes the fluctuations of the transient crosslink force to zero predicts the existence of rigid clusters. Accounting for the interaction of both fluctuations from the crosslinks and thermal noise with an effective energy landscape predicts the timescale-dependent lifetimes of flexible clusters. No clusters are predicted when the fluctuations of the transient crosslink force are taken to be large relative to thermal fluctuations. This mathematical perturbation analysis illuminates the importance of accounting for stochasticity in local incoherent transient forces to predict emergent complex biological behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230345 | PMC |
Food Res Int
November 2025
Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China.
In this study, we explored the application of lactoferrin-(-)-epigallocatechin-3-gallate (LF-EGCG) complex with rapeseed, soybean, walnut, peanut and sesame oil for the preparation of Pickering emulsions and its spray-dried microcapsules. Spectroscopy and molecular docking revealed that LF-EGCG binds via hydrogen bonds, hydrophobic interactions, and van der Waals forces. Structural analysis demonstrated that 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
With the rapid advancement in autonomous vehicles, 5G and future 6G communications, medical imaging, spacecraft, and stealth fighter jets, the frequency range of electromagnetic waves continues to expand, making electromagnetic interference (EMI) shielding a critical challenge for ensuring the safe operation of equipment. Although some existing EMI shielding materials offer lightweight construction, high strength, and effective shielding, they struggle to efficiently absorb broadband electromagnetic waves and mitigate dimensional instability and thermal stress caused by temperature fluctuations. These limitations significantly reduce their service life and restrict their practical applications.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
School of Life Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China.
Unlabelled: Mongolian gerbils had high ability to endure both high and cold temperatures. To study the mechanism of high ability for thermal adaptation, gerbils were acclimated to high temperature (30 °C) for 8 weeks, and were measured for metabolic features, body composition as well as mitochondrial content and activities. Lipidomic techniques were used to measure changes in mitochondrial membrane, including potential mitochondrial membrane remodeling during acute thermoregulation in gerbils.
View Article and Find Full Text PDFACS Omega
September 2025
Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
The crystallographic B-factor (Bf), also known as the Debye-Waller factor (DWF) or temperature factor, relates to the mean-square displacement of the atoms (X). X may be composed of individual contributions from lattice disorder (LT), static conformational heterogeneity (H) throughout the lattice, rigid body vibration (RB), local conformational vibration (V), and zero-point atomic fluctuation (A). The Bf has been widely employed as a surrogate measure of local protein flexibility, although such relation has not been confirmed.
View Article and Find Full Text PDFUltramicroscopy
August 2025
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304W. Green Street, Urbana 61801, IL, USA; Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana 61801, IL, USA. Electronic address:
Complex face-centered-cubic (FCC) alloys frequently display chemical short-range ordering (CSRO), which can be detected through the analysis of diffuse scattering. However, the interpretation of diffuse scattering is complicated by the presence of defects and thermal diffuse scattering, making it extremely challenging to distinguish CSRO using conventional scattering techniques. This complexity has sparked intense debates regarding the origin of specific diffuse-scattering signals, such as those observed at 1/3{422} and 1/2{311} positions.
View Article and Find Full Text PDF