Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant (A-M1) and (A-M1) M1 metalloaminopeptidases, with selectivity over other and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets A-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on A-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of A-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230628PMC
http://dx.doi.org/10.7554/eLife.92990DOI Listing

Publication Analysis

Top Keywords

antimalarial strategy
8
alanyl metalloaminopeptidase
8
limited proteolysis
8
mips2673
5
a-m1
5
chemoproteomics validates
4
validates selective
4
selective targeting
4
targeting alanyl
4
alanyl aminopeptidase
4

Similar Publications

Antimalarial resistance is a primary challenge in the treatment of malaria. The ongoing search for novel drug sources remains a critical strategy for addressing this issue. This study evaluated the blood stage antiplasmodial and cytotoxic activities of the crude extract and fractions obtained from Lepidobotrys staudtii.

View Article and Find Full Text PDF

Structure-Activity Relationships of 3-Hydroxypropanamidines (HPAs) with Potent In Vivo Antimalarial Activity.

J Med Chem

September 2025

Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.

New treatment strategies are required to combat the spread of drug-resistant malaria. The synthesis and preclinical evaluation of novel 3-hydroxy-propanamidines (HPAs), with modifications of the phenanthrene and the 4-fluorobenzamidine moieties, has yielded several analogs exhibiting excellent in vitro growth inhibition of drug-sensitive or resistant fresh clinical isolates and culture-adapted strains. No cytotoxicity in the human HepG2 cell line was observed, demonstrating notable parasite selectivity.

View Article and Find Full Text PDF

Strategies have been employed to address antimalarial drug resistance, including the exploration of new therapeutic targets. In this study, the stem bark of Dalbergia miscolobium was investigated using in vitro assays against Plasmodium falciparum and pyruvate kinase II (PyrKII), an essential enzyme for parasite development. Compounds were dereplicated from ethanolic extract (IC  = 9 µg/mL) using LC-HRMS, revealing active constituents: procyanidin A1 (2), biochanin (5) and formononetin (7).

View Article and Find Full Text PDF

The emergence of multidrug resistance in Plasmodium falciparum poses a serious threat to antimalarial treatment, particularly with growing resistance to artemisinin-based combination therapies (ACTs) and partner drugs like piperaquine. Mutations in key proteins, such as PfCRT (P. falciparum chloroquine resistance transporter) and PfDHFR (P.

View Article and Find Full Text PDF

DoxyPEP: Opportunities for Expansion.

J Prim Care Community Health

September 2025

Department of Medicine, University of Chicago, Chicago, Illinois, USA.

Clinical trials show that doxycycline post-exposure prophylaxis (DoxyPEP) significantly reduces the risk of bacterial sexually transmitted infections (STIs), especially syphilis and chlamydia, in cisgender men who have sex with men and transgender women. Real-world data suggest DoxyPEP may be beneficial for other populations disproportionately affected by STIs. Given the ongoing STI epidemic we recommend discussing DoxyPEP with all eligible patients.

View Article and Find Full Text PDF