Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Peripheral nerve stimulation is an effective neuromodulation method in patients with lower extremity movement disorders caused by stroke, spinal cord injury, or other diseases. However, most current studies on rehabilitation using sciatic nerve stimulation focus solely on ankle motor regulation through stimulation of common peroneal and tibial nerves. Using the electrical nerve stimulation method, we here achieved muscle control via different sciatic nerve branches to facilitate the regulation of lower limb movements during stepping and standing. A map of relationships between muscles and nerve segments was established to artificially activate specific nerve fibers with the biomimetic stimulation waveform. Then, characteristic curves depicting the relationship between neural electrical stimulation intensity and joint control were established. Finally, by testing the selected stimulation parameters in anesthetized rats, we confirmed that single-cathode extraneural electrical stimulation could activate combined movements to promote lower limb movements. Thus, this method is effective and reliable for use in treatment for improving and rehabilitating lower limb motor dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223769PMC
http://dx.doi.org/10.34133/cbsystems.0131DOI Listing

Publication Analysis

Top Keywords

nerve stimulation
16
lower limb
12
stimulation
9
peripheral nerve
8
sciatic nerve
8
limb movements
8
electrical stimulation
8
nerve
7
biomimetic peripheral
4
stimulation promotes
4

Similar Publications

Background: Peripheral nerve injury commonly results in pain and long-term disability for patients. Recovery after in-continuity stretch or crush injury remains inherently unpredictable. However, surgical intervention yields the most favorable outcomes when performed shortly after injury.

View Article and Find Full Text PDF

Background: super-refractory status epilepticus (SRSE) is a rare and severe neurological condition associated with high mortality and significant long-term morbidity. In many cases, conventional medical treatments prove ineffective, with wide use of off-label therapies.

Methods: two researchers conducted a review of the medical records of subjects who had undergone VNS implantation in our tertiary Centre.

View Article and Find Full Text PDF

This case study reports the first documented use of stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC) to treat refractory status epilepticus (RSE). A 33-year-old woman with drug-resistant epilepsy and recurrent RSE underwent SEEG to define her epileptogenic zone. A new RSE started shortly before and continued during the SEEG exploration, being unresponsive to multiple antiseizure medications, vagal nerve stimulation, and corticosteroid therapy.

View Article and Find Full Text PDF

Background: In patients with moderate COPD, response to pulmonary rehabilitation including exercise training varies according to the presence of peripheral muscle fatigue (pMF) of quadriceps. This study investigates the role of pMF in predicting pulmonary rehabilitation outcomes in more severe COPD patients who have already developed chronic respiratory failure (COPD-CRF).

Methods: A analysis of a prospective randomised controlled trial was performed at Istituti Clinici Scientifici Maugeri Lumezzane (Brescia, Italy), involving 30 COPD-CRF patients undergoing a pulmonary rehabilitation programme comprising 20 endurance training sessions.

View Article and Find Full Text PDF

Neuronal networks in animal brains are considered to realize specific filter functions through the precise configuration of synaptic weights, which are autonomously regulated without external supervision. In this study, we employ a single Hodgkin-Huxley-type neuron with autapses as a minimum model to computationally investigate how spike-timing-dependent plasticity (STDP) adjusts synaptic weights through recurrent feedback. The results show that the weights undergo oscillatory potentiation or depression with respect to autaptic delay and high-frequency stimulation.

View Article and Find Full Text PDF