Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endogenous interferents can cause nonselectivity in ligand binding pharmacokinetic assays, leading to inaccurate quantification of drug concentrations. We describe the development of a Gyrolab immunoassay to quantify a new modality, CB307 and discuss strategies implemented to overcome matrix effects and achieve selectivity at the desired sensitivity. Matrix effects were mitigated using strategies including increasing minimum required dilution (MRD) and lower limit of quantification, optimization of antibody orientation, assay buffer and solid phase. The strategies described resulted in a selective method for CB307 in disease state matrix that met bioanalytical method validation (BMV) guidance and is currently used to support clinical pharmacokinetic sample analysis in the first-in-human POTENTIA clinical study (NCT04839991) as a secondary clinical end point.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389741PMC
http://dx.doi.org/10.1080/17576180.2024.2365545DOI Listing

Publication Analysis

Top Keywords

matrix effects
8
solving selectivity
4
selectivity issues
4
issues lbas
4
lbas case
4
case study
4
study gyrolab
4
gyrolab quantify
4
quantify cb307
4
cb307 bispecific
4

Similar Publications

Background: Superficial injection of hyaluronic acid (HA)-based gels is a widely used method to restore skin quality and achieve a more youthful appearance. While the clinical benefits of such procedures are well established, their biological mechanisms of action remain poorly understood.

Objective: This study aimed to evaluate the effectiveness of two cross-linked HA gels (IPN-12.

View Article and Find Full Text PDF

Kinesin family member 14 (KIF14) has been implicated in the progression of multiple cancer types, yet its role in colorectal cancer (CRC) metastasis remains undefined. Here, we assesse KIF14 expression in CRC specimens and explore its clinical and functional significance. KIF14 upregulation is frequently observed in CRC tissues and is correlated with advanced tumor stage and reduced overall survival.

View Article and Find Full Text PDF

A novel magnetic nanostructured molecularly imprinted polymer probe (FeO@MIP) was developed for the continuous detection of Ti/Fe. The synthesis employed 50 nm FeO nanoparticles as the core matrix, with Ti and Fe serving as template molecules. Functional monomers α-methylacrylic acid (MAA) and acrylamide (AM) were used, along with ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent and 2,2'-azobisisobutyronitrile (AIBN) as the polymerization initiator, utilizing a microwave-assisted procedure.

View Article and Find Full Text PDF

Background And Aims: Cholangiopathies, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and post-COVID-19 cholangiopathy (PCC), involve chronic cholangiocyte injury, senescence, epithelial-stromal crosstalk, and progressive fibrosis. However, effective in vitro models to capture these interactions are limited. Here, we present a scaffold-free 3D multilineage spheroid model, composed of hepatocyte-like cells (HepG2), cholangiocytes (H69), and hepatic stellate cells (LX-2), designed to recapitulate early fibrogenic responses driven by senescent cholangiocytes.

View Article and Find Full Text PDF

Purpose: Tracer kinetic models are used in arterial spin labeling (ASL); however, deciding which model parameters to fix or fit is not always trivial. The identifiability of the resultant system of equations is useful to consider, since it will likely impact parameter uncertainty. Here, we analyze the identifiability of two-compartment models used in multi-echo (ME) blood-brain-barrier (BBB)-ASL and evaluate the reliability of the fitted water-transfer rate ).

View Article and Find Full Text PDF