Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The need for sustainable agriculture amid a growing population and challenging climatic conditions is hindered by the environmental repercussions of widespread fertilizer use, resulting in the accumulation of metal ions and the loss of micronutrients. The present study provides an approach to improve the efficiency of nanofertilizers by controlling the release of copper (Cu) ions from copper oxide (CuO) nanofertilizers through bioionic liquids based on plant growth regulators (PGR-ILs). A 7-day study was conducted to understand the kinetics of Cu ion release in aqueous solution of five different PGR-ILs, with choline ascorbate ([Cho][Asc]) or choline salicylate ([Cho][Sal]) leading to 200- to 700-fold higher dissolution of Cu ions in comparison to choline indole-3-acetate ([Cho][IAA]), choline indole-3-butyrate ([Cho][IBA]), and choline gibberellate ([Cho][GA]). The tunable diffusion of Cu ions from CuO nanofertilizers using PGR-ILs is then applied in a foliar spray study, evaluating its impact on the growth phenotype, photosynthetic parameters, and carbon dioxide (CO) sequestration in in a greenhouse. The results indicate that nanoformulations with lower concentrations of Cu ions in PGR-IL solutions exhibit superior outcomes in terms of plant length, net photosynthetic rate, dry biomass yield, and CO sequestration, emphasizing the critical role of dissolution kinetics in determining the effectiveness of PGR-IL-based nanoformulations for sustainable agriculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215779PMC
http://dx.doi.org/10.1021/acssusresmgt.4c00041DOI Listing

Publication Analysis

Top Keywords

sustainable agriculture
12
dissolution kinetics
8
cuo nanofertilizers
8
ions
5
choline
5
unveiling dissolution
4
kinetics cuo
4
cuo nanofertilizer
4
nanofertilizer bio-based
4
bio-based ionic
4

Similar Publications

Against the backdrop of grassland ecological degradation, grassland transfer has become a crucial pathway for optimizing livestock resource allocation and promoting sustainable pastoral development. Based on survey data from 383 herder households in the farming-pastoral ecotone of Inner Mongolia, China, this study applies Heckman models, mediation models, and moderation models to examine the impact of digital technology on herders' grassland leasing-in decisions and the underlying mechanisms. The results indicate that digital technology significantly increases both the probability and the scale of grassland leasing-in among herders.

View Article and Find Full Text PDF

Incorporating bioaccessibility into health risk assessments enhances the accuracy of exposure estimates for heavy metal (HM) pollution, supports targeted remediation, and informs public health and policy decisions, particularly for vulnerable populations. Because HM bioaccessibility depends on local soil and geographic characteristics, identifying its relationship with soil properties is crucial for assessing soil pollution potential. Although HM concentrations can be measured relatively easily, bioaccessibility requires complex laboratory procedures, limiting routine applications in regulatory contexts.

View Article and Find Full Text PDF

Understanding the intricate relationship between land use/land cover (LULC) transformations and land surface temperature (LST) is critical for sustainable urban planning. This study investigates the spatiotemporal dynamics of LULC and LST across Delhi, India, using thermal data from Landsat 7 (2001), Landsat 5 (2011) and Landsat 8 (2021) resampled to 30-m spatial resolution, during the peak summer month of May. The study aims to target three significant aspects: (i) to analyse and present LULC-LST dynamics across Delhi, (ii) to evaluate the implications of LST effects at the district level and (iii) to predict seasonal LST trends in 2041 for North Delhi district using the seasonal auto-regressive integrated moving average (SARIMA) time series model.

View Article and Find Full Text PDF

Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.

Stress Biol

September 2025

Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.

Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated.

View Article and Find Full Text PDF

Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.

View Article and Find Full Text PDF