98%
921
2 minutes
20
Background: Overexpression of SLC16A3 can contribute to the development of various tumors by regulating metabolism, but a systematic analysis of SLC16A3 in bladder cancer (BC) has been rarely reported.
Methods: We used the BC datasets from public databases to investigate SLC16A3 expression in BC. We first analysed the relationship between SLC16A3 expression and clinical characteristics of 412 bladder cancer patients. After that, gene function analyses and immunocorrelation analyses of SLC16A3 were conducted with the R package. For immunotherapy effect and drug sensitivity analysis, we also used the R package. We also analysed the relation between SLC16A3 expression and 20 m6A modification key genes. Finally, we determined the expression localization of SLC16A3 in bladder cancer by single-cell sequencing analysis using 3,115 BC cells. We further detected the expression of SLC16A3/MCT4 on BC samples by reversed transcriptionquantitative polymerase chain reaction and immunohistochemistry.
Results: The SLC16A3 was overexpressed in BC cells, including epithelial cells (p<0.001). The high SLC16A3 expression level of patients with BC was significantly related to poor prognosis (p=0.044), and we established a reliable prognosis model for BC patients. Statistically significant associations between SLC16A3 and m6A modification (ALKBH5) gene (p<0.001), key genes in aerobic glycolysis, M2 macrophage infiltration (p=0.0058), and immune checkpoint regulation were observed.
Conclusion: Overexpression of SLC16A3 is an independent prognostic factor in patients with BC. SLC16A3 may influence the immune infiltration of BC by regulating BC metabolism and m6A methylation, which ultimately can lead to the progress of BC. For the detection and therapy of BC, SLC16A3 may be a potent therapeutic target for BC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0113862073278304240614064748 | DOI Listing |
JCO Clin Cancer Inform
September 2025
USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA.
Purpose: To evaluate a generative artificial intelligence (GAI) framework for creating readable lay abstracts and summaries (LASs) of urologic oncology research, while maintaining accuracy, completeness, and clarity, for the purpose of assessing their comprehension and perception among patients and caregivers.
Methods: Forty original abstracts (OAs) on prostate, bladder, kidney, and testis cancers from leading journals were selected. LASs were generated using a free GAI tool, with three versions per abstract for consistency.
Am J Case Rep
September 2025
Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China.
BACKGROUND Non-traumatic bladder rupture, a rare yet potentially life-threatening condition, can stem from diverse factors such as malignancies, bladder inflammation, or bladder diverticulum rupture. Pelvic radiotherapy, in extremely rare instances, can lead to radiation cystitis and subsequent bladder fistula formation. Patients with such conditions often present with abdominal pain, hematuria, oliguria, and urinary ascites.
View Article and Find Full Text PDFInt J Surg
September 2025
Guangxi Medical University, Nanning, Guangxi, China.
World J Urol
September 2025
Uro-Oncology Program, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
Purpose: We aimed to evaluate the impact of day- and night-time pad wetness on 2yrs-QoL after Radical Cystectomy (RC) with Orthotopic Neobladder (ON) from a Randomized Controlled Trial (RCT) aimed at comparing open RC (ORC) and Robot-Assisted RC (RARC) with intracorporeal (i) ON.
Methods: Between January 2018 and September 2020, 116 patients were enrolled. Data from self-assessed questionnaires (EORTC-QLQ-C30 and QLQ-BLM30) were collected.
Elife
September 2025
Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Immunogenic cell death (ICD) is a type of cell death sparking adaptive immune responses that can reshape the tumor microenvironment. Exploring key ICD-related genes in bladder cancer (BLCA) could enhance personalized treatment. The Cancer Genome Atlas (TCGA) BLCA patients were divided into two ICD subtypes: ICD-high and ICD-low.
View Article and Find Full Text PDF