Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetes mellitus (DM), an important public health problem, aggravates the global economic burden. Diabetic encephalopathy (DE) is a serious complication of DM in the central nervous system. Metformin has been proven to improve DE. However, the mechanism is still unclear. In this study, the db/db mice, a common model used for DE, were employed to explore and study the neuroprotective effect of metformin and related mechanisms. Behavioral tests indicated that metformin (100 or 200 mg/kg/day) could significantly improve the learning and memory abilities of db/db mice. The outcomes from the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) demonstrate that metformin effectively modulates glucose and insulin signaling pathways in db/db mice. The results of body weight and blood lipid panel (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) show that metformin promotes the level of lipid metabolism in db/db mice. Furthermore, data from oxidative stress assays, which measured levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase, suggest that metformin suppresses oxidative stress-induced brain damage in db/db mice. In addition, western blot, Nissl staining, and immunofluorescence results showed that metformin increased the expressions of nerve growth factor and postsynaptic density 95 and repaired neuronal structural damage. For the mechanism study, metformin activated SIRT1 and inhibited the expression of NLRP3 inflammasome (NLRP3, ASC, caspase-1, IL-1β, and IL-18) and inflammatory cytokines (TNFα and IL-6). In conclusion, metformin could ameliorate cognitive dysfunction through the SIRT1/NLRP3 pathway, which might be a promising mechanism for DE treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-024-02465-1DOI Listing

Publication Analysis

Top Keywords

db/db mice
24
metformin
10
cognitive dysfunction
8
dysfunction sirt1/nlrp3
8
tolerance test
8
lipoprotein cholesterol
8
db/db
6
mice
6
metformin improves
4
improves cognitive
4

Similar Publications

Bioinspired Provisional Matrix Stimulates Regenerative Healing of Diabetic Wounds.

Wound Repair Regen

September 2025

Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio, USA.

This study tested the hypothesis that diabetic wound treatment with biomimetic pro-angiogenic, proteolytically and mechanically stable RADA16-II peptide nanofibers promotes regenerative wound healing via attenuation of inflammation and stimulation of neovascularization. Two full-thickness excisional dorsal skin wounds were created on 8-10 week old female db/db mice and treated with nanofiber hydrogel or saline (control). Animals were euthanized on days 7, 14, 28, and 56 and their wounds were analysed for morphology, vascularization, strength, and inflammation.

View Article and Find Full Text PDF

Triptolide improves microbial dysbiosis and metabolite disorder in db/db mice.

Ren Fail

December 2025

Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, Shenzhen, China.

Background: Diabetic kidney disease (DKD) is an increasing global public health problem. Triptolide (TP) has a good therapeutic effect on DKD and is widely used in China. However, the mechanism of TP is still unclear.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a multifactorial disease in which inflammation and angiogenesis play a crucial role. SerpinE2, or protease nexin-1 (PN-1), is a protease inhibitor of the serpin family, expressed by vascular and inflammatory cells. In this study, we addressed the role of SerpinE2 in DN, using the models of streptozotocin-induced type-1 and db/db type-2 diabetes.

View Article and Find Full Text PDF

Background Type 2 diabetes (T2D) is a complex metabolic disorder characterized by impaired glucose regulation and insulin resistance and frequently accompanied by obesity and dyslipidemia. The search for novel therapeutic agents to manage these metabolic parameters remains ongoing. Pepper fruit (cv.

View Article and Find Full Text PDF

Metabolic syndrome (MetS)-related diseases, such as type 2 diabetes (T2D) and obesity, are among the leading causes of liver damage, and their prevalence poses an increasing clinical challenge. The Mediterranean diet (MD) has shown promising effects in managing MetS, reducing mortality and morbidity. However, the precise biochemical and molecular mechanisms underlying the MD efficacy remain unclear.

View Article and Find Full Text PDF