Quantitative reagent monitoring in paper-based electrochemical rapid diagnostic tests.

Lab Chip

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Paper-based rapid diagnostic tests (RDTs) are an essential component of modern healthcare, particularly for the management of infectious diseases. Despite their utility, these capillary-driven RDTs are compromised by high failure rates, primarily caused by user error. This limits their utility in complex assays that require multiple user operations. Here, we demonstrate how this issue can be directly addressed through continuous electrochemical monitoring of reagent flow inside an RDT using embedded graphenized electrodes. Our method relies on applying short voltage pulses and measuring variations in capacitive discharge currents to precisely determine the flow times of injected samples and reagents. This information is reported to the user, guiding them through the testing process, highlighting failure cases and ultimately decreasing errors. Significantly, the same electrodes can be used to quantify electrochemical signals from immunoassays, providing an integrated solution for both monitoring assays and reporting results. We demonstrate the applicability of this approach in a serology test for the detection of anti-SARS-CoV-2 IgG in clinical serum samples. This method paves the way towards "smart" RDTs able to continuously monitor the testing process and improve the robustness of point-of-care diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4lc00390jDOI Listing

Publication Analysis

Top Keywords

rapid diagnostic
8
diagnostic tests
8
testing process
8
quantitative reagent
4
reagent monitoring
4
monitoring paper-based
4
paper-based electrochemical
4
electrochemical rapid
4
tests paper-based
4
paper-based rapid
4

Similar Publications

Background: Stroke-prone spontaneously hypertensive rats (SHRSP) exhibit slow-twitch muscle-specific hypotrophy compared with normotensive Wistar-Kyoto rats (WKY). Because slow-twitch muscles are prone to disuse atrophy, SHRSP may experience both disuse atrophy and impaired recovery from it. This study investigated the response of SHRSP to disuse atrophy and subsequent recovery, using WKY as a control.

View Article and Find Full Text PDF

The rapid evolution of digital tools in recent years after COVID-19 pandemic has transformed diagnostic and therapeutic practice in neurology. This shift has highlighted the urgent need to integrate digital competencies into the training of future specialists. Key innovations such as telemedicine, artificial intelligence, and wearable health technologies have become central to improving healthcare delivery and accessibility.

View Article and Find Full Text PDF

Functional synapses between neurons and small cell lung cancer.

Nature

September 2025

Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Small cell lung cancer (SCLC) is a highly aggressive type of lung cancer, characterized by rapid proliferation, early metastatic spread, frequent early relapse and a high mortality rate. Recent evidence has suggested that innervation has an important role in the development and progression of several types of cancer. Cancer-to-neuron synapses have been reported in gliomas, but whether peripheral tumours can form such structures is unknown.

View Article and Find Full Text PDF

Objectives: Canadian guidelines recommend HIV testing for individuals being evaluated for syphilis. Our objective was to examine three aspects of HIV testing (ie, if an HIV test occurred, the timing of the HIV test in relation to the syphilis test and the proportion with a positive HIV test result) among syphilis tests between 2017 and 2022 from individuals with no evidence of a previous HIV diagnosis.

Design And Setting: This study is a retrospective analysis of comprehensive laboratory testing data from Ontario's provincial public health laboratory.

View Article and Find Full Text PDF

Fingerprint stability of the oil biomarker hopanes and steranes in different aquatic mediums.

J Chromatogr A

September 2025

College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China. Electronic address:

Oil spills pose critical risks to coastal ecosystems, leading to bioaccumulation in cultured species and long-term economic repercussions for coastal communities. Biomarkers including hopanes and steranes have been widely used in oil fingerprinting. An aquatic microcosm was established in this study to simulate real-life marine conditions, enabling systematic monitoring of oil distributions in various aquatic mediums during nearly a month period.

View Article and Find Full Text PDF