98%
921
2 minutes
20
The metabotropic glutamate receptor (mGluR, GRM) family is involved in multiple signaling pathways and regulates neurotransmitter release. However, the evolutionary history, distribution, and function of the mGluRs family in lampreys have not been determined. Therefore, we identified the mGluRs gene family in the genome of Lethenteron reissneri, which has been conserved throughout vertebrate evolution. We confirmed that Lr-GRM3, Lr-GRM5, and Lr-GRM7 encode three types of mGluRs in lamprey. Additionally, we investigated the distribution of Lr-GRM3 within this species by qPCR and Western blotting. Furthermore, we conducted RNA sequencing to investigate the molecular function of Lr-GRM3 in lamprey. Our gene expression profile revealed that, similar to that in jawed vertebrates, Lr-GRM3 participates in multiple signal transduction pathways and influences synaptic excitability in lampreys. Moreover, it also affects intestinal motility and the inflammatory response in lampreys. This study not only enhances the understanding of mGluRs' gene evolution but also highlights the conservation of GRM3's role in signal transduction while expanding our knowledge of its functions specifically within lampreys. In summary, our experimental findings provide valuable insights for studying both the evolution and functionality of the mGluRs family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-024-01374-x | DOI Listing |
Front Biosci (Landmark Ed)
August 2025
Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA.
Glutamate is an important neurotransmitter in the mammalian brain. Among the receptors that glutamate interacts with is metabotropic glutamate (mGlu) receptor 2, a Gα-coupled receptor. These receptors are primarily located on glutamatergic nerve terminals and act as presynaptic autoreceptors to produce feedback inhibition of glutamate release.
View Article and Find Full Text PDFNeurobiol Aging
September 2025
Departamento de Farmacobiología. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 14330, Mexico. Electronic address:
The physiological decline associated with aging is often accompanied by a progressive deterioration in cognitive processing abilities driven by a series of cellular dysfunctions that remain poorly understood. In the hippocampus, a critical area for learning and memory, aging affects the functional expression of ionotropic and metabotropic receptors, including the metabotropic glutamate receptors (mGluRs). mGluRs play a critical role in multiple cellular functions, including modulation of ion channels and intrinsic excitability, synaptic transmission, and induction of synaptic plasticity, processes considered part of the cellular substrates for learning and memory.
View Article and Find Full Text PDFBrain Res Bull
September 2025
Department of Physiology Faculty of Medicine, Kansai Medical University, 2-5-1 Shin-machi Hirakata, Osaka 573-1010, Japan. Electronic address:
Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors (GPCRs) that mediate slow glutamatergic signal transduction and regulate cell excitability in the central nervous system. Group I mGluRs are coupled to G proteins and mobilize intracellular Ca. Group II mGluRs are coupled to G proteins and inhibit adenylyl cyclase.
View Article and Find Full Text PDFSci Signal
September 2025
Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Opioids relieve pain by activating μ-opioid receptors (MORs), which inhibit communication between pain-sensing neurons (nociceptors) and the spinal cord. However, prolonged opioid use can paradoxically lead to increased pain sensitivity (hyperalgesia) and reduced analgesic efficacy (tolerance), partly because of the activation of NMDA-type glutamate receptors (NMDARs) at the central terminals of primary sensory neurons in the spinal cord. Here, we identified a critical role for the G protein Gα in this paradox.
View Article and Find Full Text PDFFront Immunol
August 2025
Department of Neurology, Medical University of Warsaw, Warsaw, Poland.
Autoimmune cerebellar ataxia (ACA) associated with anti-Homer-3 antibodies is a rare but increasingly recognized immune-mediated neurological condition. It represents a potentially treatable cause of sporadic cerebellar syndrome and may clinically mimic primarily multiple system atrophy of the cerebellar type (MSA-C), and less frequently, other atypical parkinsonian disorders. Because of the significant clinical overlap with neurodegenerative diseases, particularly MSA-C, Homer-3-associated ACA may be underdiagnosed or misdiagnosed, delaying effective treatment.
View Article and Find Full Text PDF