Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Industrial waste contaimnation of water sources is a serious environmental problem. As a result, it's critical to identify metallic contamination in water with precision, sensitivity, and accuracy. In acetonitrile, the fluorimetric parameters of N,N-'bis(2,5-dihydroxybenzylidene)-4,4'-diamino diphenyl ether (DHDPE) and aluminum complex were determined. In the acetonitrile medium, the best fluorescence intensity of the DHDPE-Al complex was observed at λex = 280 nm, λem = 391 nm (excitation and emission wavelengths). For optimum complex formation, the ideal pH, duration, and temperature were 4.5, 20 min, and 25 °C, respectively. Within the ranges of 0.027-0.27 and 0.27-2.70 ppm aluminum concentrations, [Al]-F.I. Calibration graphs were linear. The fluorimetric aluminum measurement method was applied to diverse water sources using the newly synthesized macro molecular Schiff base DHDPE as the ligand. The aluminum concentration in water inflow to KOSKI (Konya Water and Sewerage Administration) was doubled as a result of the examination when compared to other samples of water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124726DOI Listing

Publication Analysis

Top Keywords

newly synthesized
8
diphenyl ether
8
water sources
8
water
7
aluminum
5
fluorimetric methods
4
methods determination
4
determination aluminum
4
aluminum water
4
water resources
4

Similar Publications

A novel phthalonitrile derivative (a) containing three functional groups (hexyl, aminated ester, phenoxy) was synthesized and subsequently cyclotetramerized in the presence of the corresponding metal chloride salts to obtain hexadeca-substituted metal {M = Cu(II) and Co(II)} phthalocyanines (b and c). The water-soluble phthalocyanines (d and e) were prepared by treating the newly synthesized complexes (b and c) with methyl iodide. Moreover, gold nanoparticles (1) and silver nanoparticles (2) were prepared, and their surfaces were modified with quaternary phthalocyanines (d and e).

View Article and Find Full Text PDF

Synthesis and Evaluation of Phenoxybenzylpiperidinyl Analogues as Agonists of the Chemokine Receptor CCR8.

Chem Biodivers

September 2025

Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular, Structural and Translational Virology Research Group, KU Leuven, Leuven, Belgium.

The human chemokine receptor 8 (CCR8) received attention as target for the treatment of various autoimmune disorders. Phenoxybenzylpiperidine analogues are known to act as CCR8 agonists, although their structure-activity relationship (SAR) has been studied to a limited extent. In this study, the SAR of phenoxybenzylpiperidinyl analogues was explored in a systematic way by fusion or insertion of various heterocyclic groups on the piperidinyl ring, yielding a set of 21 novel phenoxybenzylpiperidinyl derivatives.

View Article and Find Full Text PDF

Pectus excavatum is a common congenital chest wall deformity that can lead to significant cardiopulmonary compression and psychological distress. The minimally invasive Nuss procedure is the standard treatment, but it often results in severe postoperative pain. Effective perioperative pain management is essential to enhance recovery and improve patient outcomes.

View Article and Find Full Text PDF

A novel silica-based sorbent, silica-carbazole-formazan (Si-Carb-Formazan), was synthesized through in situ functionalization with a newly prepared carbazole formazan derivative to remove Cu-(II) ions from aqueous solutions efficiently. The sorbent was characterized using techniques such as FTIR, SEM, TGA, and XPS, which revealed a porous structure with a high surface area and excellent thermal stability. Batch adsorption experiments analyzed the influence of various factors on the sorbent's performance, demonstrating its high efficiency.

View Article and Find Full Text PDF

Introduction: Interferon-induced transmembrane proteins (IFITMs) inhibit the entry of diverse enveloped viruses. The spectrum of antiviral activity of IFITMs is largely determined by their subcellular localization. IFITM1 localizes to and primarily blocks viral fusion at the plasma membrane, while IFITM3 prevents viral fusion in late endosomes by accumulating in these compartments.

View Article and Find Full Text PDF