Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We consider the question of how correlated the system hardness is between classical algorithms of electronic structure theory in ground state estimation and quantum algorithms. To define the system hardness for classical algorithms, we employ empirical criterion based on the deviation of electronic energies produced by coupled cluster and configuration interaction methods from the exact ones along multiple bonds dissociation in a set of molecular systems. For quantum algorithms, we have selected the Variational Quantum Eigensolver (VQE) and Quantum Phase Estimation (QPE) methods. As characteristics of the system hardness for quantum methods, we analyzed circuit depths for the state preparation, the number of quantum measurements needed for the energy expectation value, and various cost characteristics for the Hamiltonian encodings via Trotter approximation and linear combination of unitaries (LCU). Our results show that the quantum resource requirements are mostly unaffected by classical hardness, with the only exception being the state preparation part, which contributes to both VQE and QPE algorithm costs. However, there are clear indications that constructing the initial state with a significant overlap with the true ground state is easier than obtaining the state with an energy expectation value within chemical precision. These results support optimism regarding the identification of a molecular system where a quantum algorithm excels over its classical counterpart, as quantum methods can maintain efficiency in classically challenging systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00298DOI Listing

Publication Analysis

Top Keywords

system hardness
16
ground state
12
quantum
9
state energy
8
hardness classical
8
classical algorithms
8
quantum algorithms
8
quantum methods
8
state preparation
8
energy expectation
8

Similar Publications

Energy production from renewable resources remains a leading focus in sustainable power generation. Recently, bifacial photovoltaic (BPV) systems have gained global attention for their enhanced energy yield. In this study, seashell waste was repurposed as an alternative reflector material for BPV modules.

View Article and Find Full Text PDF

An 8-week feeding trial was conducted to assess the effects of hydrolyzed feather meal (HFM) as a fish meal replacement on the growth performance, flesh quality, skin color, and intestinal microbiota of yellow catfish (). Five isonitrogen (44% crude protein) and isolipidic (8.5% crude lipid) diets were formulated with varying levels of HFM at 0% (FM, control), 2.

View Article and Find Full Text PDF

Traditional cheese production represents an important aspect of gastronomic heritage, blending cultural identity with sensory characteristics. This study investigates the sensory characteristics, consumer preferences, and physicochemical properties of three traditional Swedish hard cheeses-Grevé, Herrgård, and Präst-matured for 12 and 18 months. Using Quantitative Descriptive Analysis (QDA), instrumental color and texture profiling, and a hedonic consumer study, the research explores how cheese type and maturation influence sensory perception and liking.

View Article and Find Full Text PDF

Correlations Between Textural Properties of Potato Chips and Diffusion Coefficients of Frying Oils.

J Texture Stud

October 2025

Faculty of Chemical-Metallurgical Engineering, Department of Food Engineering, Istanbul Technical University, Sarıyer, Istanbul, Türkiye.

In this study, potato slices were fried in four different vegetable oils (corn, olive, palm olein, and sunflower) to investigate how oil type influences the characteristics of potato chips. The diffusion coefficient of oils was attempted to be correlated with the final moisture, oil uptake, and textural parameters of potato chips. The diffusion coefficients were determined using two approaches.

View Article and Find Full Text PDF

Lignocellulosic materials derived from by-products such as cellulose typically provide enhanced interfacial properties when functionalized with coupling agents, such as maleic anhydride (MA), and incorporated into polylactic acid (PLA) polymers. This research aims to identify the optimal conditions for either improving or maintaining PLA properties evaluating interactions by incorporating varying amounts of cellulose (5-28 wt%) extracted from sawdust biomass and PLA-g-MA (3-20 wt%) composites into pure PLA. This is accomplished through an extreme vertices mixture design (EVMD).

View Article and Find Full Text PDF