Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Templated synthesis of proteins containing non-natural amino acids (nnAAs) promises to expand the chemical space available to biological therapeutics and materials, but existing technologies are still limiting. Addressing these limitations requires a deeper understanding of the mechanism of protein synthesis and how it is perturbed by nnAAs. Here we examine the impact of nnAAs on the formation and ribosome utilization of the central elongation substrate: the ternary complex of native, aminoacylated tRNA, thermally unstable elongation factor, and GTP. By performing ensemble and single-molecule fluorescence resonance energy transfer measurements, we reveal that both the ()- and ()-β isomers of phenylalanine (Phe) disrupt ternary complex formation to levels below in vitro detection limits, while ()- and ()-β-Phe reduce ternary complex stability by 1 order of magnitude. Consistent with these findings, ()- and ()-β-Phe-charged tRNAs were not utilized by the ribosome, while ()- and ()-β-Phe stereoisomers were utilized inefficiently. ()-β-Phe but not ()-β-Phe also exhibited order of magnitude defects in the rate of translocation after mRNA decoding. We conclude from these findings that non-natural amino acids can negatively impact the translation mechanism on multiple fronts and that the bottlenecks for improvement must include the consideration of the efficiency and stability of ternary complex formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212133PMC
http://dx.doi.org/10.1021/acscentsci.4c00314DOI Listing

Publication Analysis

Top Keywords

ternary complex
20
reduce ternary
8
complex stability
8
non-natural amino
8
amino acids
8
complex formation
8
order magnitude
8
ternary
5
complex
5
β-amino acids
4

Similar Publications

Hydrogen Bond Disruption-Induced Ion Rearrangement in Acetonitrile-Water-Sodium Sulfate Solutions.

J Phys Chem B

September 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.

View Article and Find Full Text PDF

Resistant starches with additional functionalities, such as starch-polyphenol complexes, are generating great interest due to the increasing incidence of diet-related diseases. However, preparing these complexes remains a major challenge due to the incompatible structures of many natural phenolic compounds. Herein, three protocols were compared for preparing novel amylose (AM) complexes with polyphenol quercetin (Q) in the presence of lauric acid (LA).

View Article and Find Full Text PDF

Serine hydroxymethyltransferase (SHMT) is a critical enzyme in the one-carbon (1C) metabolism pathway catalyzing the reversible conversion of L-Ser into Gly and concurrent transfer of 1C unit to tetrahydrofolate (THF) to give 5,10-methylene-THF (5,10-MTHF), which is used in the downstream syntheses of biomolecules critical for cell proliferation. The cellular 1C metabolism is hijacked by many cancer types to support cancer cell proliferation, making SHMT a promising target for the design and development of novel small-molecule antimetabolite chemotherapies. To advance structure-assisted drug design, knowledge of SHMT catalysis is crucial, but can only be fully realized when the atomic details of each reaction step governed by the acid-base catalysis are elucidated by visualizing active site hydrogen atoms.

View Article and Find Full Text PDF

Multi-way calibration strategies involving excitation-emission data measurements from drug-modulated fluorescence in CdTe quantum dots and AgInS nanocrystals.

Anal Chim Acta

November 2025

The Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE) - the Portuguese Research Centre for Sustainable Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal. Electronic address:

Background: When using semiconductor quantum dots (QDs) for single-analyte sensing, recognition is commonly achieved through interactions with capping ligands attached to the QDs surface. These ligands form an organic layer that provides stability in solution and assures selectivity by binding the target analyte via surface functional groups. However, a common analytical challenge arises in the subsequent stage of the QD-based sensing scheme.

View Article and Find Full Text PDF

A novel ternary synergistic photoelectrochemical (PEC) probe is presented utilizing metal-organic framework (MOF)-templated Pd/CdS@CoS nanocages for sensing chlorpyrifos (CPF) using chronoamperometry under an applied bias of - 65 mV with 465-nm LED illumination. Derived from ZIF-67 via in situ sulfidation, the hollow nanocage architecture integrated CdS nanoparticles with CoS to form a direct Z-scheme heterojunction, while decorating Pd quantum dots (QDs) created a Schottky barrier, implementing a crucial dual charge-transfer enhancement strategy. Density functional theory (DFT) simulations confirmed a 0.

View Article and Find Full Text PDF