98%
921
2 minutes
20
Objective: Skin cancer refers to the pathological condition characterized by the proliferation of atypical skin cells in an uncontrolled manner. Plant-based products such as bixin although show promising anticancer properties, but maintaining their stability in a formulation is a difficult task. The objective of the research is to formulate a silver nanoparticle gel preparation of bixin and evaluate its anticancer properties.
Methods: The extract from seed was prepared by hot extraction technique to isolate the active ingredient, bixin. A green synthesis approach was utilized for preparing the silver nanoparticle gel of bixin (BOAgNPs). Characterization of silver nanoparticles was done using FTIR, scanning electron microscopy, compatibility study, homogeneity testing, pH evaluation, and drug content determination. The anticancer activity was performed using cell lines (B16F10) and by chemical carcinogen (7,12-dimethylbenz (a) anthracene) in mice.
Results: The BOAgNPs-loaded topical gel was found to be homogeneous (clear orange color) and pH-compatible (pH ≈ 6.66) with the skin. The characterization studies indicated the presence of all functional groups in the formulation. An optimized batch of bixin-nano gel showed about 60% inhibitory effects on B16F10 cell lines ( activity) when equated with a reference drug, 5-fluorouracil. The anticancer study suggested suppression of tumorigenesis and promotion of the healing process with bixin-nano gel application on the skin.
Conclusion: The results suggested the promising anticancer property of bixin when formulated in silver nanoparticle gel. The preparation of silver particles nano gel with bixin might provide an effective alternative option for treating skin cancers, provided more research complements the findings of the present study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201344 | PMC |
http://dx.doi.org/10.1016/j.jsps.2024.102125 | DOI Listing |
Anal Chem
September 2025
Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, China.
Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy in children. Current clinical diagnosis primarily relies on invasive detection methods, while molecular subtyping remains a complex and time-consuming process. This study innovatively employed silver nanoparticle-based surface-enhanced Raman spectroscopy (SERS) technology to systematically analyze 116 serum samples, including those with breakpoint cluster region-Abelson (-) fusion genotype, mixed-lineage leukemia (, also known as lysine methyltransferase 2A, ) gene rearrangement subtype, T-lymphoblastic ALL, and healthy controls.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Nanotechnology Lab, Research Laboratories of Saigon Hi-Tech Park, Lot I3, N2 Street, Tang Nhon Phu Ward, Ho Chi Minh City 70000, Vietnam.
Silver nanoprisms (AgNPrs) are promising candidates for surface-enhanced Raman scattering (SERS) due to their strong localized surface plasmon resonance and sharp tip geometry. In this study, AgNPrs were synthesized through a photochemical method by irradiating spherical silver nanoparticle seeds with 10 W green light-emitting diodes (LEDs; 520 ± 20 nm) for various periods of time up to 72 h. The growth mechanism was investigated through ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, X-ray diffraction, and transmission electron microscopy analyses, confirming the gradual transformation of spherical seeds into AgNPrs.
View Article and Find Full Text PDFCurr Drug Deliv
August 2025
Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India.
Introduction: Burn wounds are painful injuries that demand immediate and effective management. Conventional wound care solutions often have limitations, such as discomfort during application or removal and potential damage to healing tissue. Therefore, developing novel wound dressings that support biological processes and promote wound healing is highly beneficial.
View Article and Find Full Text PDFDiscov Nano
September 2025
Department of Conservative Dentistry and Endodontics, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, 603203, India.
This study focuses on tripartite synthesis of Silver (AgNPs), Mesoporous Silica (MSNs), and Hydroxyapatite (n-HAp) nanoparticles with aqueous extract of Cissus quadrangularis (Veldt grape plant; Indian name: Pirandai) as a reducing agent. The dried and powdered form of the plant was subjected to aqueous extraction. The phytochemicals analysis was qualitatively estimated which detected the presence of alkaloid, tannin, phenol, terpenoid, steroid and saponin.
View Article and Find Full Text PDFACS Omega
August 2025
Department of Food Science, University of Arkansas, Fayetteville, Arkansas 72704, United States.
Biopolymers and water-soluble nontoxic synthetic polymer composites using silver nanoparticles are astute approaches for antibacterial film fabrication. Moreover, surface treatment of the biopolymeric composite film by cold plasma can enhance the biocidal activity. Silver nanoparticles were synthesized by using the reduction method.
View Article and Find Full Text PDF