Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aquatic ferns of the genus Azolla (Azolla) form highly productive symbioses with filamentous cyanobacteria fixing N in their leaf cavities, Nostoc azollae. Stressed symbioses characteristically turn red due to 3-deoxyanthocyanidin (DA) accumulation, rare in angiosperms and of unknown function. To understand DA accumulation upon cold acclimation and recovery, we integrated laser-desorption-ionization mass-spectrometry-imaging (LDI-MSI), a new Azolla filiculoides genome-assembly and annotation, and dual RNA-sequencing into phenotypic analyses of the symbioses. Azolla sp. Anzali recovered even when cold-induced DA-accumulation was inhibited by abscisic acid. Cyanobacterial filaments generally disappeared upon cold acclimation and Nostoc azollae transcript profiles were unlike those of resting stages formed in cold-resistant sporocarps, yet filaments re-appeared in leaf cavities of newly formed green fronds upon cold-recovery. The high transcript accumulation upon cold acclimation of AfDFR1 encoding a flavanone 4-reductase active in vitro suggested that the enzyme of the first step in the DA-pathway may regulate accumulation of DAs in different tissues. However, LDI-MSI highlighted the necessity to describe metabolite accumulation beyond class assignments as individual DA and caffeoylquinic acid metabolites accumulated differentially. For example, luteolinidin accumulated in epithelial cells, including those lining the leaf cavity, supporting a role for the former in the symbiotic interaction during cold acclimation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.15010DOI Listing

Publication Analysis

Top Keywords

cold acclimation
16
leaf cavities
8
nostoc azollae
8
accumulation cold
8
cold
5
accumulation
5
biosynthesis differential
4
differential spatial
4
spatial distribution
4
distribution 3-deoxyanthocyanidins
4

Similar Publications

Freezing point depression due to high salt concentration is crucial for liquid water to exist on cold worlds, expanding special regions where habitats are plausible. Determination of the growth tolerances of terrestrial microbes in analog systems impacts planetary protection protocols aimed at preventing interference with life detection missions or potential native ecosystems on celestial bodies. We measured the salinity tolerances of 18 salinotolerant bacteria (Bacillus, Halomonas, Marinococcus, Nesterenkonia, Planococcus, Salibacillus, and Terribacillus).

View Article and Find Full Text PDF

Mitochondrial membrane remodeling during heat acclimation in Mongolian gerbils.

Mar Life Sci Technol

August 2025

School of Life Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China.

Unlabelled: Mongolian gerbils had high ability to endure both high and cold temperatures. To study the mechanism of high ability for thermal adaptation, gerbils were acclimated to high temperature (30 °C) for 8 weeks, and were measured for metabolic features, body composition as well as mitochondrial content and activities. Lipidomic techniques were used to measure changes in mitochondrial membrane, including potential mitochondrial membrane remodeling during acute thermoregulation in gerbils.

View Article and Find Full Text PDF

Many Arctic fishes experience prolonged periods of extreme cold and large thermal variation over both rapid and seasonal time scales which challenge critical physiological functions. In the central Canadian Arctic, we caught wild adult lake trout (Salvelinus namaycush) acclimatized to winter and summer temperatures to determine the extent to which they seasonally adjust cardiac thermal performance and adrenergic control. We assessed the intrinsic and maximum heart rate (f and f) of anaesthetised fish through cholinergic blockade and either adrenergic blockade (f) or stimulation (f) during acute warming.

View Article and Find Full Text PDF

Climate change threatens biodiversity and ecosystem services around the globe. Despite the importance of native bees as pollinators, there is evidence of global declines, and we know very little about how climate shapes their distributions now and into the future. In the current study, we combined large-scale seasonal field sampling and experimental acclimation to examine whether populations of an Australian bee, Exoneura robusta, vary in their capacity to adapt to different climates.

View Article and Find Full Text PDF

Abiotic stresses, such as heat, cold, drought, and salt, pose severe challenges to global agriculture, with climate change exacerbating these threats and intensifying risks to crop productivity and food security. Strigolactones (SLs), a class of phytohormones, play pivotal roles in mediating plant development and enhancing stress resilience. This review highlights the multifaceted mechanisms through which SLs regulate plant responses to abiotic stresses, integrating molecular, physiological, biochemical, and morphological dimensions.

View Article and Find Full Text PDF