98%
921
2 minutes
20
In recent years, with the increasing demand for high-quality images in various fields, more and more attention has been focused on noise removal techniques for image processing. The effective elimination of unwanted noise plays a crucial role in improving image quality. To meet this challenge, many noise removal methods have been proposed, among which the diffusion model has become one of the focuses of many researchers. In order to make the restored image closer to the real image and retain more features of the image, this paper proposes a DIR-SDE method with reference to the diffusion models of IR-SDE and IDM, which improve the feature retention of the image in the de-raining process, and then improve the realism of the image for the image de-raining task. In this study, IR-SDE was used as the base structure of the diffusion model, IR-SDE was improved, and DINO-ViT was combined to enhance the image features. During the diffusion process, the image features were extracted using DINO-ViT, and these features were fused with the original images to enhance the learning effect of the model. The model was also trained and validated with the Rain100H dataset. Compared with the IR-SDE method, it improved 0.003 in the SSIM, 0.003 in the LPIPS, and 1.23 in the FID. The experimental results show that the diffusion model proposed in this study can effectively improve the image restoration performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207714 | PMC |
http://dx.doi.org/10.3390/s24123715 | DOI Listing |
J Cardiovasc Electrophysiol
September 2025
Cardiac Electrophysiology Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.
Introduction: Iatrogenic lead perforation is a rare but serious complication of cardiac implantable electronic device (CIED) implantation. Evidence on percutaneous management of subacute or delayed cases remains limited.
Methods: We retrospectively reviewed 38 patients treated for iatrogenic lead perforation between January 2012 and October 2024.
J Appl Clin Med Phys
September 2025
Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA.
Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.
View Article and Find Full Text PDFJ Appl Clin Med Phys
September 2025
Icon Cancer Centre Toowoomba, Toowoomba, Queensland, Australia.
Introduction: The role of imaging in radiotherapy is becoming increasingly important. Verification of imaging parameters prior to treatment planning is essential for safe and effective clinical practice.
Methods: This study described the development and clinical implementation of ImageCompliance, an automated, GUI-based script designed to verify and enforce correct CT and MRI parameters during radiotherapy planning.
J Appl Clin Med Phys
September 2025
Clinical Imaging Physics Group, Duke University Health System, Durham, North Carolina, USA.
Introduction: Medical physicists play a critical role in ensuring image quality and patient safety, but their routine evaluations are limited in scope and frequency compared to the breadth of clinical imaging practices. An electronic radiologist feedback system can augment medical physics oversight for quality improvement. This work presents a novel quality feedback system integrated into the Epic electronic medical record (EMR) at a university hospital system, designed to facilitate feedback from radiologists to medical physicists and technologist leaders.
View Article and Find Full Text PDFJ Appl Clin Med Phys
September 2025
Department of Radiation Oncology, University of Utah, Salt Lake City, Utah, USA.
Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.
View Article and Find Full Text PDF