Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Lysine acetylation of proteins plays a critical regulatory function in plants. A few advances have been made in the study of plant acetylproteome. However, until now, there have been few data on Pall. (). We analyzed the molecular mechanisms of photosynthesis and stress resistance in under UV-B stress. We measured chlorophyll fluorescence parameters of under UV-B stress and performed a multi-omics analysis. Based on the determination of chlorophyll fluorescence parameters, Y(NO) (Quantum yield of non-photochemical quenching) increased under UV-B stress, indicating that the plant was damaged and photosynthesis decreased. In the analysis of acetylated proteomics data, acetylated proteins were found to be involved in a variety of biological processes. Notably, acetylated proteins were significantly enriched in the pathways of photosynthesis and carbon fixation, suggesting that lysine acetylation modifications have an important role in these activities. Our findings suggest that has decreased photosynthesis and impaired photosystems under UV-B stress, but NPQ shows that plants are resistant to UV-B. Acetylation proteomics revealed that up- or down-regulation of acetylation modification levels alters protein expression. Acetylation modification of key enzymes of the Calvin cycle (Rubisco, GAPDH) regulates protein expression, making Rubisco and GAPDH proteins expressed as significantly different proteins, which in turn affects the carbon fixation capacity of . Thus, Rubisco and GAPDH are significantly differentially expressed after acetylation modification, which affects the carbon fixation capacity and thus makes the plant resistant to UV-B stress. Lysine acetylation modification affects biological processes by regulating the expression of key enzymes in photosynthesis and carbon fixation, making plants resistant to UV-B stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201758 | PMC |
http://dx.doi.org/10.3390/biom14060732 | DOI Listing |