Biological Surface Layer Formation on Bioceramic Particles for Protein Adsorption.

Biomimetics (Basel)

Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the biomedical fields of bone regenerative therapy, the immobilization of proteins on the bioceramic particles to maintain their highly ordered structures is significantly important. In this review, we comprehensively discussed the importance of the specific surface layer, which can be called "non-apatitic layer", affecting the immobilization of proteins on particles such as hydroxyapatite and amorphous silica. It was suggested that the water molecules and ions contained in the non-apatitic layer can determine and control the protein immobilization states. In amorphous silica particles, the direct interactions between proteins and silanol groups make it difficult to immobilize the proteins and maintain their highly ordered structures. Thus, the importance of the formation of a surface layer consisting of water molecules and ions (i.e., a non-apatitic layer) on the particle surfaces for immobilizing proteins and maintaining their highly ordered structures was suggested and described. In particular, chlorine-containing amorphous silica particles were also described, which can effectively form the surface layer of protein immobilization carriers. The design of the bio-interactive and bio-compatible surfaces for protein immobilization while maintaining the highly ordered structures will improve cell adhesion and tissue formation, thereby contributing to the construction of social infrastructures to support super-aged society.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201679PMC
http://dx.doi.org/10.3390/biomimetics9060347DOI Listing

Publication Analysis

Top Keywords

surface layer
16
highly ordered
16
ordered structures
16
amorphous silica
12
protein immobilization
12
bioceramic particles
8
immobilization proteins
8
maintain highly
8
water molecules
8
molecules ions
8

Similar Publications

Fluorinated Imidazolidinium Cations as a Fluorine-Lean Interface Repairing Agent for Li-Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.

Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.

View Article and Find Full Text PDF

Lignin-intercalated WS with synergistic adsorption for efficiency lead removal.

Bioresour Technol

September 2025

School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Zibo Engineering Research Center for Bio-based New Materials, Zibo 255000, China. Electronic address:

Tungsten disulfide (WS), a two-dimensional adsorbent material, has garnered great attention in removing lead ions (Pb) from water due to their extensive exposed adsorption sites. However, WS nanosheets inevitably agglomerated and stacked during the preparation and adsorption process, leading to reduced adsorption efficiency. Current method of enhancing WS dispersion is mainly blending with synthetic polymers, but these synthetic polymers themselves do not possess adsorption properties, resulting adsorption effect enhancement poorly.

View Article and Find Full Text PDF

This study investigates the vertical profiles, pollution status and ecological risks of heavy metal(loid)s contamination in three sediment cores (N21, N03, and 38002) from the North Yellow Sea (NYS), with a focus on the influence of grain size effects on sedimentary profiles. The results revealed distinct vertical distribution patterns of heavy metal(loid)s content among the three sediment cores. Enrichment Factor (EF) and Geo-accumulation Index (I) assessments identified Sb as significantly enriched, indicating anthropogenic influence, whereas Co, Cr, Cu, Ni, and Zn primarily originated from natural weathering.

View Article and Find Full Text PDF

Regulation of phytoplankton community by mesoscale eddies and the East Indian Coastal Current in the southwestern Bay of Bengal during the northeast monsoon.

Mar Environ Res

September 2025

Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laborator

Sri Lanka is uniquely situated at the junction of the Bay of Bengal (BOB) and the Arabian Sea (AS), where phytoplankton community may be strongly influenced by ocean dynamical processes, particularly mesoscale eddies and the East Indian Coastal Current (EICC). Here, to explore these regulatory mechanisms, phytoplankton and physicochemical parameters were collected from the top 200 m water column in the eastern and southern seas of Sri Lanka during the winter monsoon. Results showed higher concentrations of nutrients and phytoplankton abundance within the regions affected by EICC and cyclonic eddy (CE) compared to anticyclonic eddy (ACE).

View Article and Find Full Text PDF

Room temperature ionic liquids show great promise as electrolytes in various technological applications, such as energy storage or electrotunable lubrication. These applications are particularly intriguing due to the specific behavior of ionic liquids in nanoconfinement. While previous research has been focused on optimizing the required characteristics through the selection of electrolyte properties, the contribution of confining material properties in these systems has been largely overlooked.

View Article and Find Full Text PDF