Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Empirical data relating body mass to immune defence against infections remain limited. Although the metabolic theory of ecology predicts that larger organisms would have weaker immune responses, recent studies have suggested that the opposite may be true. These discoveries have led to the safety factor hypothesis, which proposes that larger organisms have evolved stronger immune defences because they carry greater risks of exposure to pathogens and parasites. In this study, we simulated sepsis by exposing blood from nine primate species to a bacterial lipopolysaccharide (LPS), measured the relative expression of immune and other genes using RNAseq, and fitted phylogenetic models to determine how gene expression was related to body mass. In contrast to non-immune-annotated genes, we discovered hypermetric scaling in the LPS-induced expression of innate immune genes, such that large primates had a disproportionately greater increase in gene expression of immune genes compared to small primates. Hypermetric immune gene expression appears to support the safety factor hypothesis, though this pattern may represent a balanced evolutionary mechanism to compensate for lower per-transcript immunological effectiveness. This study contributes to the growing body of immune allometry research, highlighting its importance in understanding the complex interplay between body size and immunity over evolutionary timescales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285754PMC
http://dx.doi.org/10.1098/rspb.2024.0535DOI Listing

Publication Analysis

Top Keywords

immune genes
12
gene expression
12
immune
9
immune responses
8
body mass
8
larger organisms
8
safety factor
8
factor hypothesis
8
expression immune
8
expression
5

Similar Publications

Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.

View Article and Find Full Text PDF

Nuclear glycine decarboxylase suppresses STAT1-dependent MHC-I and promotes cancer immune evasion.

EMBO J

September 2025

Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.

Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.

View Article and Find Full Text PDF

Upon DNA virus infection, cGAS senses viral DNA and triggers MITA (also called STING)-dependent induction of type I interferons (IFN-Is) and other cytokines/chemokines. IFN-Is further activate STAT1/2 to induce interferon-stimulated genes (ISGs) and the innate antiviral response. How the innate antiviral response is silenced in uninfected cells and efficiently mounts upon viral infection is not fully understood.

View Article and Find Full Text PDF

The sensing of Gram-negative Extracellular Vesicles (EVs) by the innate immune system has been extensively studied in the past decade. In contrast, recognition of Gram-positive EVs by innate immune cells remains poorly understood. Comparative genome-wide transcriptional analysis in human monocytes uncovered that S.

View Article and Find Full Text PDF

In coeliac disease (CeD), the epithelial lining (EL) of the small intestine is severely damaged by a complex auto-inflammatory response, leading intraepithelial lymphocytes to attack epithelial cells. To understand the intestinal changes and genetic regulation in CeD, we investigated the heterogeneity in the transcriptomic profile of the duodenal EL using RNA-seq and eQTL analysis on predicted cell types. The study included duodenal biopsies from 82 patients, grouped into controls, gluten-free diet treated CeD and untreated CeD.

View Article and Find Full Text PDF