Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
While the world struggles to recover from the devastation wrought by the widespread spread of COVID-19, monkeypox virus has emerged as a new global pandemic threat. In this paper, a high precision and lightweight classification network MpoxNet based on ConvNext is proposed to meet the need of fast and safe detection of monkeypox classification. In this method, a two-branch depth-separable convolution residual Squeeze and Excitation module is designed. This design aims to extract more feature information with two branches, and greatly reduces the number of parameters in the model by using depth-separable convolution. In addition, our method introduces a convolutional attention module to enhance the extraction of key features within the receptive field. The experimental results show that MpoxNet has achieved remarkable results in monkeypox disease classification, the accuracy rate is 95.28%, the precision rate is 96.40%, the recall rate is 93.00%, and the F1-Score is 95.80%. This is significantly better than the current mainstream classification model. It is worth noting that the FLOPS and the number of parameters of MpoxNet are only 30.68% and 31.87% of those of ConvNext-Tiny, indicating that the model has a small computational burden and model complexity while efficient performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190078 | PMC |
http://dx.doi.org/10.3389/fcimb.2024.1397316 | DOI Listing |