Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mice models of Alzheimer's disease (APP/PS1) typically experience cognitive decline with age. G6PD overexpressing mice (G6PD-Tg) exhibit better protection from age-associated functional decline including improvements in metabolic and muscle functions as well as reduced frailty compared to their wild-type counterparts. Importantly G6PD-Tg mice show diminished accumulation of DNA oxidation in the brain at different ages in both males and females. To further explore the potential benefits of modulating the G6PD activity in neurodegenerative diseases, triple transgenic mice (3xTg G6PD) were generated, overexpressing APP, PSEN1, and G6PD genes. The cognitive decline characteristic of APP/PS1 mice was prevented in 3xTg G6PD mice, despite similar amyloid-β (Aβ) levels in the hippocampus. This challenges the dominant hypothesis in Alzheimer's disease (AD) etiology and the majority of therapeutic efforts in the field, based on the notion that Aβ is pivotal in cognitive preservation. Notably, the antioxidant properties of G6PD led to a decrease in oxidative stress parameters, such as improved GSH/GSSG and GSH/CysSSG ratios, without major changes in oxidative damage markers. Additionally, metabolic changes in 3xTg G6PD mice increased brain energy status, countering the hypometabolism observed in Alzheimer's models. Remarkably, a higher respiratory exchange ratio suggested increased carbohydrate utilization. The relative failures of Aβ-targeted clinical trials have raised significant skepticism on the amyloid cascade hypothesis and whether the development of Alzheimer's drugs has followed the correct path. Our findings highlight the significance of targeting glucose-metabolizing enzymes rather than solely focusing on Aβ in Alzheimer's research, advocating for a deeper exploration of glucose metabolism's role in cognitive preservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253689PMC
http://dx.doi.org/10.1016/j.redox.2024.103242DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
3xtg g6pd
12
cognitive decline
8
g6pd mice
8
cognitive preservation
8
mice
7
g6pd
7
alzheimer's
6
glucose phosphate
4
phosphate dehydrogenase
4

Similar Publications

Introduction: Dysfunction of the glymphatic system is thought to lead to build up of toxic proteins including β-amyloid and α-synuclein, and thus may be involved in dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). The Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a marker of glymphatic function.

Aims: To investigate DTI-ALPS in mild cognitive impairment (MCI) and dementia, and determine its relationship with cognitive decline, and biomarkers of neurodegeneration.

View Article and Find Full Text PDF

Background: Unsupervised cognitive assessments are becoming commonly used in studies of aging and neurodegenerative diseases. As assessments are completed in everyday environments and without a proctor, there are concerns about how common distractions may impact performance and whether these distractions may differentially impact those experiencing the earliest symptoms of dementia.

Objective: We examined the impact of self-reported interruptions, testing location, and social context during testing on remote cognitive assessments in older adults.

View Article and Find Full Text PDF

Background And Objectives: α-Synuclein seed amplification assays (αSAAs) can improve the diagnosis of synucleinopathies and detect α-synuclein (αSyn) copathology in vivo in clinical practice. We aimed to evaluate the diagnostic performance of αSAA for detecting αSyn in CSF for diagnosing dementia with Lewy bodies (DLB) in a clinical cohort of cognitively impaired individuals. We explored how the coexistence of Alzheimer disease (AD) and αSyn pathology influences biomarker levels and clinical profiles.

View Article and Find Full Text PDF

Protective Role of Apelin in a Mouse Model of Post-Intensive Care Syndrome.

Am J Respir Cell Mol Biol

September 2025

University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada.

Post-Intensive Care Syndrome (PICS) is a serious condition involving physical weakness, depression, and cognitive impairment that develop during or after an intensive care unit (ICU) stay, often resulting in long-term declines in quality of life. Patients with acute respiratory distress syndrome (ARDS) and severe COVID-19 are at particularly high risk, yet the molecular mechanisms underlying PICS remain poorly understood. Here, we identify impaired Apelin-APJ signaling as a potential contributor to PICS pathogenesis via disruption of inter-organ homeostasis.

View Article and Find Full Text PDF

Microglia regulate neuronal circuit plasticity. Disrupting their homeostatic function has detrimental effects on neuronal circuit health. Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD), with several microglial activation genes linked to increased risk for these conditions.

View Article and Find Full Text PDF