Dentate Gyrus Morphogenesis is Regulated by an Autism Risk Gene Trio Function in Granule Cells.

Neurosci Bull

Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Be

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autism Spectrum Disorders (ASDs) are reported as a group of neurodevelopmental disorders. The structural changes of brain regions including the hippocampus were widely reported in autistic patients and mouse models with dysfunction of ASD risk genes, but the underlying mechanisms are not fully understood. Here, we report that deletion of Trio, a high-susceptibility gene of ASDs, causes a postnatal dentate gyrus (DG) hypoplasia with a zigzagged suprapyramidal blade, and the Trio-deficient mice display autism-like behaviors. The impaired morphogenesis of DG is mainly caused by disturbing the postnatal distribution of postmitotic granule cells (GCs), which further results in a migration deficit of neural progenitors. Furthermore, we reveal that Trio plays different roles in various excitatory neural cells by spatial transcriptomic sequencing, especially the role of regulating the migration of postmitotic GCs. In summary, our findings provide evidence of cellular mechanisms that Trio is involved in postnatal DG morphogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748712PMC
http://dx.doi.org/10.1007/s12264-024-01241-yDOI Listing

Publication Analysis

Top Keywords

dentate gyrus
8
granule cells
8
gyrus morphogenesis
4
morphogenesis regulated
4
regulated autism
4
autism risk
4
risk gene
4
trio
4
gene trio
4
trio function
4

Similar Publications

Background And Purpose: The pathological role of the bile acid receptor TGR5/GPBA in Alzheimer's disease (AD) is not fully understood. We investigated the pharmacological effects and mechanisms of TGR5 in AD model mice.

Experimental Approach: TGR5 expression was assessed in AD mice using immunofluorescence and immunoblotting.

View Article and Find Full Text PDF

Early-life experiences shape neural networks, with heightened plasticity during the so-called "sensitive periods" (SP). SP are regulated by the maturation of GABAergic parvalbumin-positive (PV+) interneurons, which become enwrapped by perineuronal nets (PNNs) over time, modulating SP closure. Additionally, the opening and closing of SP are orchestrated by two distinct gene clusters known as "trigger" and "brake".

View Article and Find Full Text PDF

Aberrant hippocampal subregional network associated with episodic memory decline in amnestic mild cognitive impairment.

Asian J Psychiatr

September 2025

National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Traditional Chinese Medicine Re

Background: Amnestic mild cognitive impairment (aMCI) is characterized by marked episodic memory decline. The hippocampus is essential for episodic memory, and integration of information within its subregions is central to this process. This study examined how alterations in hippocampal subregional network relate to episodic memory impairment in aMCI.

View Article and Find Full Text PDF

Although glutamatergic and GABAergic synapses are important in seizure generation, the contribution of non-synaptic ionic and electrical mechanisms to synchronization of seizure-prone hippocampal neurons remains unclear. Here, we developed a physiologically relevant model to study these mechanisms by inducing prolonged seizure-like discharges (SLDs) in hippocampal slices from male rats through modest, sustained ionic manipulations. Specifically, we reduced extracellular calcium to 0.

View Article and Find Full Text PDF

Hippocampal subfield activity in schizophrenia: Effects of the disease course.

Schizophr Res

September 2025

Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA. Electronic address:

Alterations in hippocampal structure and function are established in schizophrenia. However, the specific patterns of hippocampal activity along the schizophrenia course remain unknown. Eighty-five study participants [34 schizophrenia probands (SZ), 32 first-degree relatives (REL), 19 healthy controls (HC)] underwent 3Tesla ultra-high resolution brain MRI (Vascular Space Occupancy); relative cerebral blood volume (rCBV)-an index of regional activity-was estimated across hippocampal subfields: dentate gyrus (DG), CA3, CA1, and subiculum (SUB).

View Article and Find Full Text PDF