98%
921
2 minutes
20
To monitor COVID-19 through wastewater surveillance, global researchers dedicated significant endeavors and resources to develop and implement diverse RT-qPCR or RT-ddPCR assays targeting different genes of SARS-CoV-2. Effective wastewater surveillance hinges on the appropriate selection of the most suitable assay, especially for resource-constrained regions where scant technical and socioeconomic resources restrict the options for testing with multiple assays. Further research is imperative to evaluate the existing assays through comprehensive comparative analyses. Such analyses are crucial for health agencies and wastewater surveillance practitioners in the selection of appropriate methods for monitoring COVID-19. In this study, untreated wastewater samples were collected weekly from the Detroit wastewater treatment plant, Michigan, USA, between January and December 2023. Polyethylene glycol precipitation (PEG) was applied to concentrate the samples followed by RNA extraction and RT-ddPCR. Three assays including N1, N2 (US CDC Real-Time Reverse Transcription PCR Panel for Detection of SARS-CoV-2), and SC2 assay (US CDC Influenza SARS-CoV-2 Multiplex Assay) were implemented to detect SARS-CoV-2 in wastewater. The limit of blank and limit of detection for the three assays were experimentally determined. SARS-CoV-2 RNA concentrations were evaluated and compared through three statistical approaches, including Pearson and Spearman's rank correlations, Dynamic Time Warping, and vector autoregressive models. N1 and N2 demonstrated the highest correlation and most similar time series patterns. Conversely, N2 and SC2 assay demonstrated the lowest correlation and least similar time series patterns. N2 was identified as the optimal target to predict COVID-19 cases. This study presents a rigorous effort in evaluating and comparing SARS-CoV-2 RNA concentrations quantified with N1, N2, and SC2 assays and their interrelations and correlations with clinical cases. This study provides valuable insights into identifying the optimal target for monitoring COVID-19 through wastewater surveillance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174140 | DOI Listing |
Mar Pollut Bull
September 2025
Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong; State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Kowloon, Hong Kong. Electronic address:
Climate change and anthropogenic pressures alter phytoplankton phenology, distribution, and bloom frequency. Healthy phytoplankton communities are crucial for biogeochemical processes, blue carbon sequestration, and climate change mitigation. By employing high-throughput 18S V4 rRNA metabarcoding, we addressed the need for profiling phytoplankton community and response mechanisms in urbanized coastal ecosystems.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Medicine, Central Texas Veterans Health Care System, Temple, Texas, USA.
PLOS Glob Public Health
September 2025
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
Built environment surveillance has shown promise for monitoring COVID-19 burden at granular geographic scales, but its utility for surveillance across larger areas and populations is unknown. Our study aims to evaluate the role of built environment detection of SARS-CoV-2 for the surveillance of COVID-19 across broad geographies and populations. We conducted a prospective city-wide sampling study to examine the relationship between SARS-CoV-2 on floors and COVID-19 burden.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
September 2025
Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France.
Background: In 2023, Mayotte, a French department in the Mozambique channel, experienced a long drought that led to potable water restrictions. Although the French vaccination schedule makes polio vaccination compulsory for children, the large proportion of migrants on the island coupled with the water crisis raised concerns about the establishment of poliovirus transmission chains. Therefore, a surveillance was implemented to detect polioviruses in sewage sampled in the two main wastewater treatment plants.
View Article and Find Full Text PDFEnviron Microbiol
September 2025
Listeria: Biology and Infection Research Group (LisBio), Valencia, Spain.
Listeria monocytogenes is a saprophytic bacterium and a foodborne pathogen of humans and animals. Little is known about its distribution and genetic diversity across different environments within the same geographical region. We conducted a large-scale longitudinal study in southeastern Spain monitoring Listeria spp.
View Article and Find Full Text PDF