98%
921
2 minutes
20
A silver-catalyzed chemoselective cascade nucleophilic addition of a P-centered anion to isocyanides and cyclization reaction was developed for the efficient and practical synthesis of a wide range of 2-phosphinoyl indole and indol-3-ol derivatives. Unlike the well-documented synthesis of phosphorus-functionalized heterocycles a P-centered radical, an anionic reactivity profile of phosphine oxides is most likely involved in this domino transformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc01984a | DOI Listing |
Nat Commun
June 2024
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China.
In general, the P-centered ring-opening of quaternary phosphirenium salts (QPrS) predominantly leads to hydrophosphorylated products, while the C-centered ring-opening is primarily confined to intramolecular nucleophilic reactions, resulting in the formation of phosphorus-containing cyclization products instead of difunctionalized products generated through intermolecular nucleophilic processes. Here, through the promotion of ring-opening of three-member rings by iodine anions and the quenching of electronegative carbon atoms by iodine cations, we successfully synthesize β-functionalized vinylphosphine oxides by the P-addition of QPrS intermediates generated in situ. Multiple β-iodo-substituted vinylphosphine oxides can be obtained with exceptional regio- and stereo-selectivity by reacting secondary phosphine oxides with unactivated alkynes.
View Article and Find Full Text PDFChem Commun (Camb)
July 2024
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal Un
A silver-catalyzed chemoselective cascade nucleophilic addition of a P-centered anion to isocyanides and cyclization reaction was developed for the efficient and practical synthesis of a wide range of 2-phosphinoyl indole and indol-3-ol derivatives. Unlike the well-documented synthesis of phosphorus-functionalized heterocycles a P-centered radical, an anionic reactivity profile of phosphine oxides is most likely involved in this domino transformation.
View Article and Find Full Text PDFOrg Biomol Chem
July 2024
A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation.
Pyridines undergo a facile SAr phosphinylation with -phosphinates under catalyst- and solvent-free conditions (50-55 °C) in the presence of benzoylphenylacetylene to afford 4-phosphinylpyridines in up to 68% yield. In this reaction, benzoylphenylacetylene activates the pyridine ring by the formation of a 1,3(4)-dipolar complex, deprotonates -phosphinates to generate P-centered anions and finally acts as an oxidizer, being eliminated from an intermediate ion pair. Terminal electron-deficient acetylenes (methyl propiolate and benzoylacetylene) are inefficient as mediators in the above SAr process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2024
Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany.
Angew Chem Int Ed Engl
March 2023
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.
The copper-catalyzed enantioselective radical difunctionalization of alkenes from readily available alkyl halides and organophosphorus reagents possessing a P-H bond provides an appealing approach for the synthesis of α-chiral alkyl phosphorus compounds. The major challenge arises from the easy generation of a P-centered radical from the P-H-type reagent and its facile addition to the terminal side of alkenes, leading to reverse chemoselectivity. We herein disclose a radical 1,2-carbophosphonylation of styrenes in a highly chemo- and enantioselective manner.
View Article and Find Full Text PDF