A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dual-Component Interlayer Enables Uniform Lithium Deposition and Dendrite Suppression for Solid-State Batteries. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

β-Lithium thiophosphate (LPS) exhibits high Li conductivity and has been identified as a promising ceramic electrolyte for safe and high-energy-density all-solid-state batteries. Integrating LPS into solid-state lithium (Li) batteries would enable the use of a Li electrode with the highest deliverable capacity. However, LPS-based batteries operate at a limited current density before short-circuiting, posing a major challenge for the development of application-relevant batteries. In this work, we designed a dual-component interfacial protective layer called LiSn-LiN that forms in situ between the Li electrode and LPS electrolyte. The LiSn component, LiSn, exhibits enhanced Li diffusivity compared with the metallic lithium and facilitates a more uniform lithium deposition across the electrode surface, thus eliminating Li dendrite formation. Meanwhile, the LiN component, LiN, shows enhanced mechanical stiffness compared with LPS and functions to suppress dendrite penetration. This chemically robust LiSn-LiN interlayer provides a more than doubled deliverable critical current density compared to systems without interfacial protection. Through combined XPS and XAFS analyses, we determined the local structure and the formation kinetics of the key functional LiSn phase formed via the electrochemical reduction of a SnN precursor. This work demonstrates an example of the structural-specific design of a protective interlayer with a desired function - dendrite suppression. The structure of a functional protective layer for a given solid-state battery should be tailored based on the given battery configuration and its unique interfacial chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c05227DOI Listing

Publication Analysis

Top Keywords

uniform lithium
8
lithium deposition
8
dendrite suppression
8
current density
8
protective layer
8
batteries
5
dual-component interlayer
4
interlayer enables
4
enables uniform
4
lithium
4

Similar Publications