98%
921
2 minutes
20
Background: The InBIO Barcoding Initiative (IBI) Dataset - DS-IBILP08 contains records of 2350 specimens of moths (Lepidoptera species that do not belong to the superfamily Papilionoidea). All specimens have been morphologically identified to species or subspecies level and represent 1158 species in total. The species of this dataset correspond to about 42% of mainland Portuguese Lepidoptera species. All specimens were collected in mainland Portugal between 2001 and 2022. All DNA extracts and over 96% of the specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources.
New Information: The authors enabled "The InBIO Barcoding Initiative Database: DNA barcodes of Portuguese moths" in order to release the majority of data of DNA barcodes of Portuguese moths within the InBIO Barcoding Initiative. This dataset increases the knowledge on the DNA barcodes of 1158 species from Portugal belonging to 51 families. There is an increase in DNA barcodes of 205% in Portuguese specimens publicly available. The dataset includes 61 new Barcode Index Numbers. All specimens have their DNA barcodes publicly accessible through BOLD online database and the distribution data can be accessed through the Global Biodiversity Information Facility (GBIF).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188589 | PMC |
http://dx.doi.org/10.3897/BDJ.12.e117169 | DOI Listing |
Nat Biotechnol
September 2025
Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA.
RNA-protein interactions critically regulate gene expression and cellular processes, yet their comprehensive mapping remains challenging due to their structural diversity. We introduce PRIM-seq (protein-RNA interaction mapping by sequencing), a method for concurrent de novo identification of RNA-binding proteins and their associated RNAs. PRIM-seq generates unique chimeric DNA sequences by proximity ligation of RNAs with protein-linked DNA barcodes, which are subsequently decoded through sequencing.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
Background: A DNA barcode is a short DNA fragment used to classify and identify specific organisms, taking advantage of the specificity and diversity inherent in biological molecules. Since Herbert introduced the concept in 2003, DNA barcoding has been increasingly used in precision medicine and related fields, including species identification and environmental monitoring, over the past few decades. Although numerous molecular diagnostic techniques have emerged, many face notable obstacles such as sensitivity to handling conditions, high expenses, and limitations in accuracy.
View Article and Find Full Text PDFZookeys
August 2025
Ecology and Genetics Research Unit, P.O. Box 3000, 90014 University of Oulu, Oulu, Finland University of Oulu Oulu Finland.
A male of the little-known species Sruoga & Kaila, 2019 is described for the first time based on material collected in northern Thailand. The species is diagnosed based on characters found in the habitus and genitalia, which are illustrated in detail. Conspecificity of male and female specimens is confirmed by DNA barcodes.
View Article and Find Full Text PDFBlood Transfus
August 2025
EFS BloodCenter of Brittany, HLA-HPA Laboratory, Rennes, France.
Background: Non-invasive fetal HPA typing is a valuable tool to identify the pregnancies at risk of fetal and neonatal alloimmune thrombocytopenia (FNAIT). Different approaches have been developed, mainly based on real-time PCR and droplet digital-PCR. Those methods have a limited ability to multiplex and require replicates due to the contamination risk.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Biosciences and Territory, University of Molise, Pesche, Italy.
Accurate species identification, the first crucial step for effective root studies, is a time-demanding, experience-based and error-prone process. Molecular methods are therefore needed to ensure this process, especially in urban settings where root sampling is challenging. Here, we developed a novel molecular method for root identification in complex environments.
View Article and Find Full Text PDF