Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Computational protein design is advancing rapidly. Here we describe efficient routes starting from validated parallel and antiparallel peptide assemblies to design two families of α-helical barrel proteins with central channels that bind small molecules. Computational designs are seeded by the sequences and structures of defined de novo oligomeric barrel-forming peptides, and adjacent helices are connected by loop building. For targets with antiparallel helices, short loops are sufficient. However, targets with parallel helices require longer connectors; namely, an outer layer of helix-turn-helix-turn-helix motifs that are packed onto the barrels. Throughout these computational pipelines, residues that define open states of the barrels are maintained. This minimizes sequence sampling, accelerating the design process. For each of six targets, just two to six synthetic genes are made for expression in Escherichia coli. On average, 70% of these genes express to give soluble monomeric proteins that are fully characterized, including high-resolution structures for most targets that match the design models with high accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288890PMC
http://dx.doi.org/10.1038/s41589-024-01642-0DOI Listing

Publication Analysis

Top Keywords

computational protein
8
protein design
8
barrels computational
8
design
5
rationally seeded
4
computational
4
seeded computational
4
design ɑ-helical
4
ɑ-helical barrels
4
design advancing
4

Similar Publications

Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.

View Article and Find Full Text PDF

The rotation of the bacterial flagellum is powered by the MotAB stator complex, which converts ion flux into torque. Despite its central role in flagellar function, the evolutionary origin and structural diversity of this system remain poorly understood. Here, we present the first comprehensive phylogenetic and structural characterization of MotAB and its closest non-flagellar homologs.

View Article and Find Full Text PDF

The microglial surface protein Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) plays a critical role in mediating brain homeostasis and inflammatory responses in Alzheimer's disease (AD). The soluble form of TREM2 (sTREM2) exhibits neuroprotective effects in AD, though the underlying mechanisms remain elusive. Moreover, differences in ligand binding between TREM2 and sTREM2, which have major implications for their roles in AD pathology, remain unexplained.

View Article and Find Full Text PDF

Development of Coarse-Grained Lipid Force Fields Based on a Graph Neural Network.

J Chem Theory Comput

September 2025

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong China.

Coarse-grained (CG) lipid models enable efficient simulations of large-scale membrane events. However, achieving both speed and atomic-level accuracy remains challenging. Graph neural networks (GNNs) trained on all-atom (AA) simulations can serve as CG force fields, which have demonstrated success in CG simulations of proteins.

View Article and Find Full Text PDF

The energy landscape of folding in n-C14H30 described by a machine-learned potential.

J Chem Phys

September 2025

Yusuf Hamied Department of Chemistry. Lensfield Road, Cambridge CB2 1EW, United Kingdom.

Folding and unfolding in molecules as simple as short hydrocarbons and as complicated as large proteins continue to be an active research field. Here, we investigate folding in n-C14H30 using both density functional theory (DFT)/B3LYP calculations of 27 772 local minima and a kinetic transition network calculated for a previously reported potential energy surface (PES) obtained by fitting roughly 250 000 B3LYP energies. In addition to generating a database of minima and the transition states that connect them, these calculations and the PES based on them have been used to develop a simple and accurate model for the energy landscape.

View Article and Find Full Text PDF