98%
921
2 minutes
20
The expression of programmed death-ligand 1 (PD-L1) on extracellular vesicles (EVs) is an emerging biomarker for cancer, and has gained particular interest for its role mediating immunotherapy. However, precise quantification of PD-L1+ EVs in clinical samples remains challenging due to their sparse concentration and the enormity of the number of background EVs in human plasma, limiting applicability of conventional approaches. In this study, we develop a high-throughput droplet-based extracellular vesicle analysis (DEVA) assay for ultrasensitive quantification of EVs in plasma that are dual positive for both PD-L1 and tetraspanin (CD81) known to be expressed on EVs. We achieve a performance that significantly surpasses conventional approaches, demonstrating 360× enhancement in the limit of detection (LOD) and a 750× improvement in the limit of quantitation (LOQ) compared to conventional plate enzyme-linked immunoassay (ELISA). Underlying this performance is DEVA's high throughput analysis of individual EVs one at a time and the high specificity to targeted EVs background. We achieve a 0.006% false positive rate per droplet by leveraging avidity effects that arise from EVs having multiple copies of their target ligands on their surface. We use parallelized optofluidics to rapidly process 10 million droplets per minute, ∼100× greater than conventional approaches. A validation study on a cohort of 14 patients with melanoma confirms DEVA's ability to match conventional ELISA measurements with reduced plasma sample volume and without the need for prior EV purification. This proof-of-concept study demonstrates DEVA's potential for clinical utility to enhance prognosis as well as guide treatment for cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235413 | PMC |
http://dx.doi.org/10.1039/d4lc00331d | DOI Listing |
Arch Orthop Trauma Surg
September 2025
Medical Faculty, University of Zurich (UZH), Zurich, Switzerland.
Background: Distal triceps tendon rupture is related to high complication rates with up to 25% failures. Elbow stiffness is another severe complication, as the traditional approach considers prolonged immobilization to ensure tendon healing. Recently, a dynamic tape was designed, implementing a silicone-infused core for braid shortening and preventing repair elongation during mobilization, thus maintaining constant tissue approximation.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
Background: Percutaneous transthoracic lung biopsy (PTNB) guided by Computed Tomography (CT) greatly depends on the operators' skill for accuracy. This study aimed to evaluate whether three-dimensionally(3D) printed navigational templates for percutaneous transthoracic lung biopsy achieve diagnostic yield comparable to conventional computed tomography guidance.
Materials And Methods: Conducted from 1 November 2020, to 27 July 2023, this noninferiority randomized clinical trial included 159 patients with peripheral lung masses (≥30 mm).
Small
September 2025
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia.
Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China.
Rectangular horns are widely used in professional audio applications, but designing horns with desired radiation efficiency and directivity is time-consuming and often relies on empirical methods. A multimodal-based optimization approach is proposed in this study and can simultaneously improve the radiation efficiency and directivity control of rectangular horns over a wide frequency range. Based on acoustical properties accurately simulated by a discrete model, the terms in the objective function are constructed to measure radiation efficiency, penalize jagged shapes, and improve directivity control.
View Article and Find Full Text PDFSmall
September 2025
School of Mechanical Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Core-shell electrodes provide a potential and innovative approach for significantly enhancing the performance and capacity of supercapacitors (SCs) by combining two distinct materials. The capabilities of these advanced electrodes surpass those of conventional single electrodes. Specifically, these exhibit better energy storage, higher power density, and improved overall performance.
View Article and Find Full Text PDF