98%
921
2 minutes
20
The stability and composting behaviour of monolayers and laminates of poly (lactic acid) (PLA) and starch with and without active extracts and cellulose fibres from rice straw (RS) were evaluated. The retrogradation of the starch throughout storage (1, 5, and 10 weeks) gave rise to stiffer and less extensible monolayers with lower water vapour barrier capacity. In contrast, the PLA monolayers, with or without extract, did not show marked changes with storage. However, these changes were more attenuated in the bilayers that gained water vapour and oxygen barrier capacity during storage, maintaining the values of the different properties close to the initial range. The bioactivity of the active films exhibited a slight decrease during storage, so the antioxidant capacity is better preserved in the bilayers. All monolayer and bilayer films were fully composted within 90 days but with different behaviour. The bilayer assembly enhanced the biodegradation of PLA, whose monolayer exhibited a lag period of about 35 days. The active extract reduced the biodegradation rate of both mono- and bilayers but did not limit the material biodegradation within the time established in the Standard. Therefore, PLA-starch laminates, with or without the valorised fractions from RS, can be considered as biodegradable and stable materials for food packaging applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174990 | PMC |
http://dx.doi.org/10.3390/polym16111474 | DOI Listing |
J Environ Manage
September 2025
School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China. Electronic address:
Microbial agents represent a valuable class of additives that can enhance the value and effectiveness of compost products. This paper provides a comprehensive review of the mechanisms and applications of microorganisms in regulating lignocellulose degradation, controlling gas emissions, and managing typical pollutants during the composting of organic solid wastes. Inoculation with microbial agents can significantly improve the degradation efficiency, quality, and environmental friendliness of compost.
View Article and Find Full Text PDFInt J Environ Health Res
September 2025
PhD Program in Sciences Mentioning Applied Molecular and Cell Biology, La Frontera University, Temuco, Chile.
Changes in consumption patterns, urbanization, and industrialization have led to the generation of large volumes of municipal solid waste (MSW), posing threats to environmental sustainability. This study aimed to compost the organic fraction of municipal solid waste (OFMSW) using three composting methods: windrow (WC), pit (PC), and drum composting (DC). Distilled water was used in compost preparation and sample analysis.
View Article and Find Full Text PDFSci Total Environ
August 2025
National Research Council of Italy, Institute for Agricultural and Forest Systems in the Mediterranean, Via della Madonna Alta 128, 06128 Perugia, Italy.
Climate change and intensive farming have caused soil degradation and decreased organic carbon stocks. Current research focuses on restoring soil fertility, often through organic amendments. Biosolids stabilized in constructed wetlands (CWs) may serve as an applicable organic amendment, although limited literature exists on their properties.
View Article and Find Full Text PDFPLoS One
August 2025
Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, Hubei, P.R.China.
Background: Composting is a transformation and biodegradation process that converts organic biomass into valuable products while also removing antimicrobial resistance genes (ARGs). Promoting lignocellulose biodegradation is essential for enhancing composting efficiency and improving the quality of compost derived from agricultural organic waste. This study aims to explore the effects of cellulase and xylanase on the composting process of cow manure, with a focus on their impact on key physicochemical properties, microbial communities, and antibiotic resistance genes (ARGs).
View Article and Find Full Text PDFMicroorganisms
August 2025
Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece.
The citrus processing industry is an economically important agro-industrial sector worldwide; however, it produces significant amounts of waste annually. The biorefinery concept and the recovery of bio-based materials from agro-industrial residues, including citrus processing waste, are emphasized in the European Green Deal, reflecting the EU's commitment to fostering circularity. Biotreatment of citrus processing waste, including bioconversion into biomethane, biohydrogen, bioethanol and biodiesel, has been applied to valorize biomass for energy recovery.
View Article and Find Full Text PDF