98%
921
2 minutes
20
Energy efficient lighting strategies have received increased interest from controlled environment producers. Long photoperiods (up to 24 h - continuous lighting (CL)) of lower light intensities could be used to achieve the desired daily light integral (DLI) with lower installed light capacity/capital costs and low electricity costs in regions with low night electricity prices. However, plants grown under CL tend to have higher carbohydrate and reactive oxygen species (ROS) levels which may lead to leaf chlorosis and down-regulation of photosynthesis. We hypothesize that the use of dynamic CL using a spectral change and/or light intensity change between day and night can negate CL-injury. In this experiment we set out to assess the impact of CL on pepper plants by subjecting them to white light during the day and up to 150 µmol m s of monochromatic blue light at night while controlling the DLI at the same level. Plants grown under all CL treatments had similar cumulative fruit number and weight compared to the 16h control indicating no reduction in production. Plants grown under CL had higher carbohydrate levels and ROS-scavenging capacity than plants grown under the 16h control. Conversely, the amount of photosynthetic pigment decreased with increasing nighttime blue light intensity. The maximum quantum yield of photosystem II (F/F), a metric often used to measure stress, was unaffected by light treatments. However, when light-adapted, the operating efficiency of photosystem II (ΦPSII) decreased and non-photochemical quenching (NPQ) increased with increasing nighttime blue light intensity. This suggests that both acclimated and instantaneous photochemistry during CL can be altered and is dependent on the nighttime light intensity. Furthermore, light-adapted chlorophyll fluorescence measurements may be more adept at detecting altered photochemical states than the conventional stress metric using dark-adapted measurements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176547 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1372886 | DOI Listing |
Exp Appl Acarol
September 2025
Julius Kühn-Institut, Institute for Plant Protection in Horticulture and Urban Green, Messeweg 11/12, 38104, Braunschweig, Germany.
The tomato russet mite, Aculops lycopersici (Tryon), is a key pest of commercially grown tomatoes worldwide. Due to its minute size, its detection is often not timely for effective control. In this study, the approach of limiting A.
View Article and Find Full Text PDFPLoS One
September 2025
Agronomy and Plant Breeding Department, College of Aburaihan, University of Tehran, Tehran, Iran.
Garlic is an important bulb vegetable which is used for both culinary and medical purposes worldwide. In vitro propagation is considered a promising technic for production and conservation of disease-free garlic seed. The efficiency of in vitro culture was studied for micropropagation of native Iranian garlic genotypes.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
Natural soils are reservoirs of potentially beneficial microbes that can improve plant performance. Here, we isolated 75 bacterial strains from surface-sterilised roots of Arabidopsis thaliana (Arabidopsis) grown in a natural soil derived from an alder swamp. Culture-dependent isolation of individual strains from the roots, followed by monoassociation-based screening, identified seven bacteria that promoted Arabidopsis seedling weight.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
Plant roots are colonised by diverse communities of microorganisms that can affect plant growth and enhance plant resistance to (a) biotic stresses. We investigated the role of the indigenous soil microbiome in the resistance of tomato to the invasive sap-sucking insect Prodiplosis longifila (Diptera: Cecidomyiidae). Native and agricultural soils were sampled from the Andes in Southern Ecuador and tested, in greenhouse bioassays, for leaf tissue damage caused by P.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China. Ele
Seven plant growth-promoting bacteria (PGPB) were isolated from extracts of surface-sterilized Sedum alfredii Hance. Among the seven isolates, the strain SaRB5 identified as Stenotrophomonas maltophilia through 16S rDNA sequence analysis, exhibited highest levels of heavy metal resistance and plant growth-promoting traits. SaRB5 tolerated high concentrations of cadmium (Cd) (1.
View Article and Find Full Text PDF