Capture and Storage of Cell-Free DNA via Bio-Informational Hydrogel Microspheres.

Adv Mater

Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Excessive cell-free DNA (cfDNA) can induce chronic inflammation by activating intracellular nucleic acid sensors. Intervention in cfDNA-mediated "pro-inflammatory signaling transduction" could be a potential alleviating strategy for chronic inflammation, such as in diabetic wounds. However, effectively and specifically downgrading cfDNA concentration in the pathological microenvironment remains a challenge. Therefore, this work prepares free-standing polydopamine nanosheets through DNA-guided assembly and loaded them into microfluidic hydrogel microspheres. The π─π stacking/hydrogen bonding interactions between polydopamine nanosheets and the π-rich bases of cfDNA, along with the cage-like spatial confinement created by the hydrogel polymer network, achieved cfDNA capture and storage, respectively. Catechol in polydopamine nanosheets can also assist in reducing reactive oxygen species (ROS) levels. Efficient cfDNA binding independent of serum proteins, specific interdiction of abnormal activation of cfDNA-associated toll-like receptor 9, as well as down-regulation of inflammatory cytokines and ROS levels are shown in this system. The chronic inflammation alleviating and the pro-healing effects on the mice model with diabetic wounds are also investigated. This work presents a new strategy for capturing and storing cfDNA to intervene in cell signaling transduction. It also offers new insights into the regulatory mechanisms between inflammatory mediators and biomaterials in inflammation-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202403557DOI Listing

Publication Analysis

Top Keywords

chronic inflammation
12
polydopamine nanosheets
12
capture storage
8
cell-free dna
8
hydrogel microspheres
8
diabetic wounds
8
ros levels
8
cfdna
6
storage cell-free
4
dna bio-informational
4

Similar Publications

Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.

View Article and Find Full Text PDF

Background: The CRP-albumin-lymphocyte (CALLY) index has potential clinical value as a novel marker integrating inflammatory, nutritional and immune status in the development of colorectal polyps. This study examined whether gender factors influence the association between CALLY and colorectal polyps; in addition to elucidating whether metabolic pathways mediate this relationship.

Methods: This is a cross-sectional study including 5409 adult health screening participants who completed colonoscopy.

View Article and Find Full Text PDF

Enhancing submandibular gland resection: A retrospective study on the efficacy of the ORBEYE 3D exoscope.

Oral Maxillofac Surg

September 2025

Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Shinmachi 2-5-1, Hirakata-city, Osaka, Japan.

Purpose: For submandibular gland resection, conventional surgery with the naked eye remains the standard. With its excellent automatic focus and high magnification, the ORBEYE 3D exoscope enables precise submandibular gland resection with less stress. Therefore, we aimed to examine the usefulness of the exoscope in submandibular gland resection.

View Article and Find Full Text PDF

Cell death in multiple sclerosis.

Cell Death Differ

September 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) characterized by inflammatory demyelination and progressive neurodegeneration. Although current disease-modifying therapies modulate peripheral autoimmune responses, they are insufficient to fully prevent tissue specific neuroinflammation and long-term neuronal and oligodendrocyte loss. Growing evidence implicates various regulated cell death (RCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, not only as downstream consequences of chronic inflammation, but also as active drivers of demyelination, axonal injury, and glial dysfunction in MS.

View Article and Find Full Text PDF

Metatranscriptomics-based metabolic modeling of patient-specific urinary microbiome during infection.

NPJ Biofilms Microbiomes

September 2025

Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel University, Kiel, Schleswig-Holstein, Germany.

Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI.

View Article and Find Full Text PDF