Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Disrupted proteome homeostasis (proteostasis) in amyotrophic lateral sclerosis (ALS) has been a major focus of research in the past two decades. However, the proteostasis processes that become disturbed in ALS are not fully understood. Obtaining more detailed knowledge of proteostasis disruption in association with different ALS-causing mutations will improve our understanding of ALS pathophysiology and may identify novel therapeutic targets and strategies for ALS patients. Here we describe the development and use of a novel high-content analysis (HCA) assay to investigate proteostasis disturbances caused by the expression of several ALS-causing gene variants. This assay involves the use of conformationally-destabilised mutants of firefly luciferase (Fluc) to examine protein folding/re-folding capacity in NSC-34 cells expressing ALS-associated mutations in the genes encoding superoxide dismutase-1 (SOD1) and cyclin F (CCNF). We demonstrate that these Fluc isoforms can be used in high-throughput format to report on reductions in the activity of the chaperone network that result from the expression of SOD1, providing multiplexed information at single-cell resolution. In addition to SOD1 and CCNF, NSC-34 models of ALS-associated TDP-43, FUS, UBQLN2, OPTN, VCP and VAPB mutants were generated that could be screened using this assay in future work. For ALS-associated mutant proteins that do cause reductions in protein quality control capacity, such as SOD1, this assay has potential to be applied in drug screening studies to identify candidate compounds that can ameliorate this deficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180180PMC
http://dx.doi.org/10.1038/s41598-024-64366-0DOI Listing

Publication Analysis

Top Keywords

high-content analysis
8
amyotrophic lateral
8
lateral sclerosis
8
sclerosis als
8
proteostasis
5
als
5
analysis proteostasis
4
proteostasis capacity
4
capacity cellular
4
cellular models
4

Similar Publications

Huajiao seeds represent an underutilized high-quality woody oilseed resource rich in unsaturated fatty acids and diverse nutritional factors. This study investigated the quality characteristics and digestive behavior of two Huajiao seed oils (Zanthoxylum bungeanum seed oil (ZBSO) and Zanthoxylum schinifolium seed oil (ZSSO)). The results demonstrated that both oils were rich in unsaturated fatty acids, with ZBSO containing 76.

View Article and Find Full Text PDF

Introduction: Efficient preclinical prediction of cardiovascular side effects poses a pivotal challenge for the pharmaceutical industry. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming increasingly important in this field due to inaccessibility of human native cardiac tissue. Current preclinical hiPSC-CMs models focus on functional changes such as electrophysiological abnormalities, however other parameters, such as structural toxicity, remain less understood.

View Article and Find Full Text PDF

A machine learning-based analysis method for small molecule high content screening of three-dimensional cancer spheroid morphology.

Mol Pharmacol

August 2025

Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland. Electronic address:

Although multiparameter cellular morphological profiling methods and three-dimensional (3D) biological model systems can potentially provide complex insights for pharmaceutical discovery campaigns, there have been relatively few reports combining these experimental approaches. In this study, we used the U87 glioblastoma cell line grown in a 3D spheroid format to validate a multiparameter cellular morphological profiling screening method. The steps of this approach include 3D spheroid treatment, cell staining, fully automated digital image acquisition, image segmentation, numerical feature extraction, and multiple machine learning approaches for cellular profiling.

View Article and Find Full Text PDF

Synergistic modification of chestnut powder via Lactobacillus plantarum and pullulanase: Promotion of resistant starch formation and structural-functional enhancement.

Carbohydr Polym

November 2025

National Key Laboratory for Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Chestnut (Castanea mollissima Blume) is a nutritionally dense food, notably rich in starch, making it an important natural source of carbohydrates and energy for human diets. However, its high content of rapidly digestible starch (RDS) limits its use in low-glycemic-index (GI) food products. This study developed a synergistic bioprocess combining Lactobacillus plantarum fermentation and pullulanase-catalyzed debranching to enhance the nutritional and structural characteristics of chestnut powder.

View Article and Find Full Text PDF

SNP markers revealed the genetic diversity and population structure of Mesosphaerum suaveolens (L.) Kuntze Syn. Hyptis suaveolens (L.) Poit accessions collected in Benin.

PLoS One

September 2025

Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Plant Production, Physiology and Plant Breeding (PAGEV), School of Plant Sciences, University of Abomey-Calavi, Abomey-Calavi, Republic of Benin.

Mesosphaerum suaveolens (L.) Kuntze is a wild species with many biological activities in medicine. The species can potentially serve as a pesticide in agriculture thanks to its high content of volatile compounds.

View Article and Find Full Text PDF